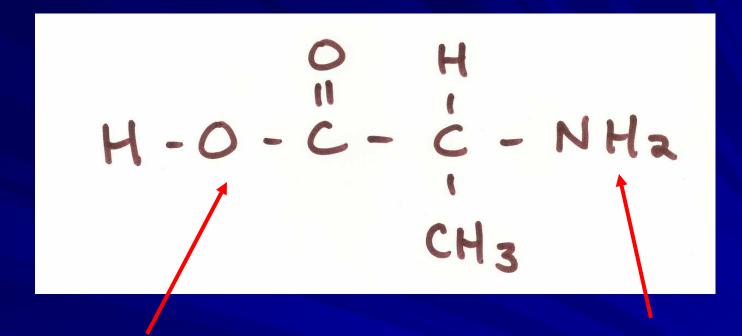
Right-handed Sugar Doughnuts: Nutritional Food for Undergraduates and Their Faculty

Thomas J. Wenzel
Department of Chemistry
Bates College
Lewiston, Maine


ENHANCING RESEARCH in the Chemical Sciences at Predominantly Undergraduate Institutions

A Report from the Undergraduate Research Summit Bates College, Lewiston, Maine August 2-4, 2003

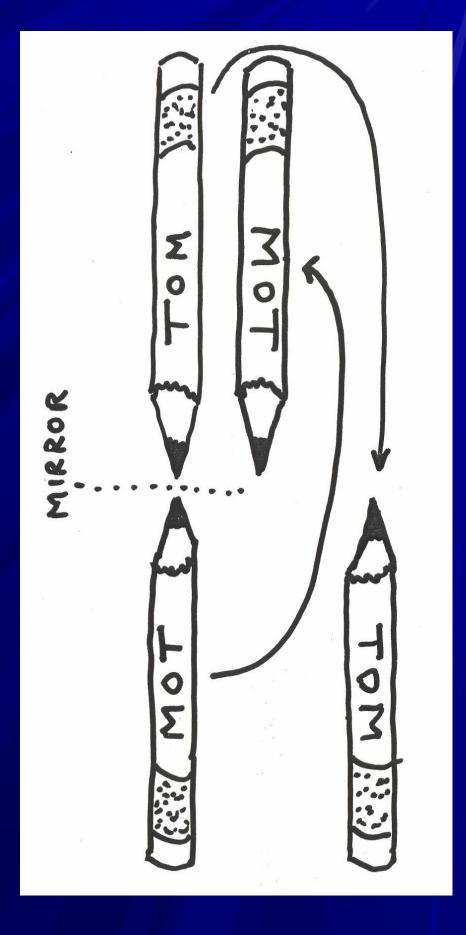
Supported by the National Science Foundation

Undergraduate research is an inquiry or investigation conducted by an undergraduate that makes an original or creative contribution to the discipline.

Alanine

Carboxylic Acid

Amine

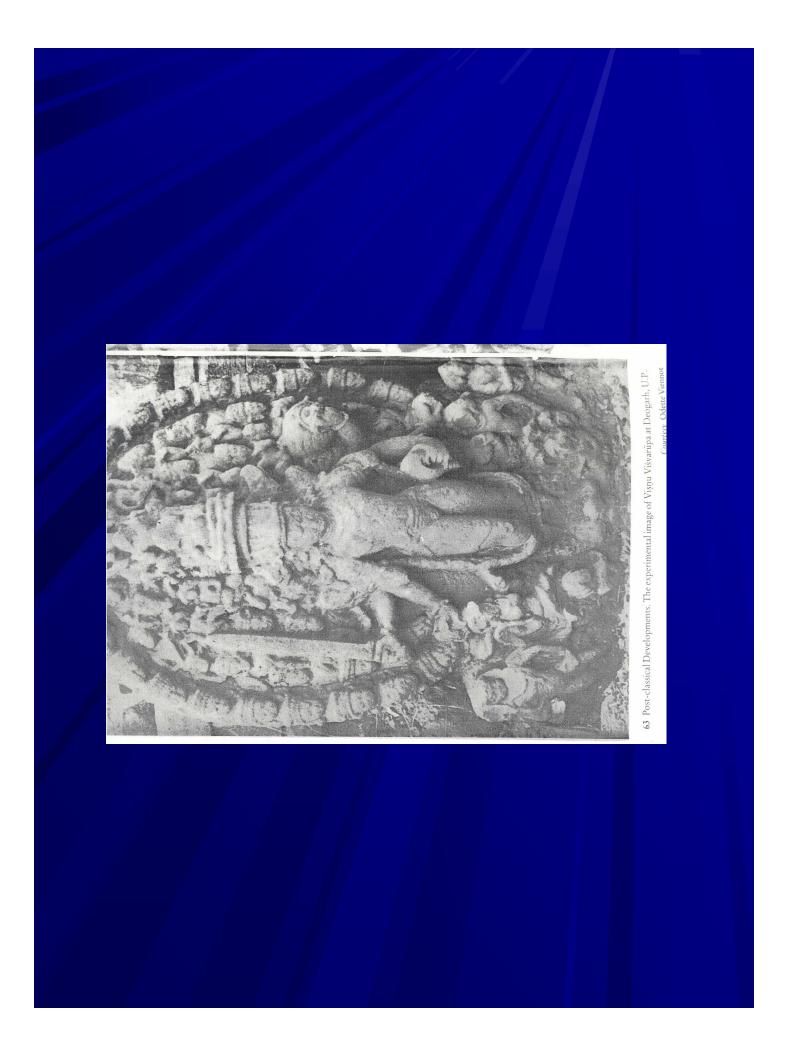

Amino Acid

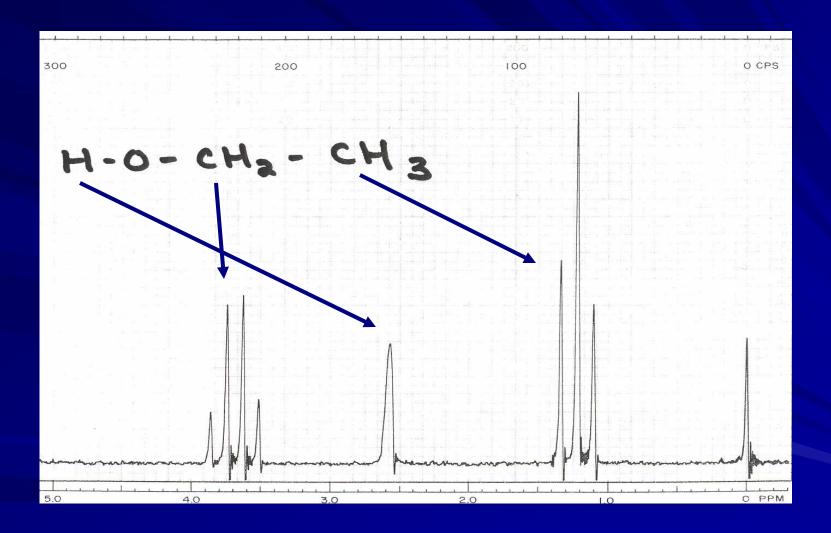

Non-superimposable mirror images

Enantiomers

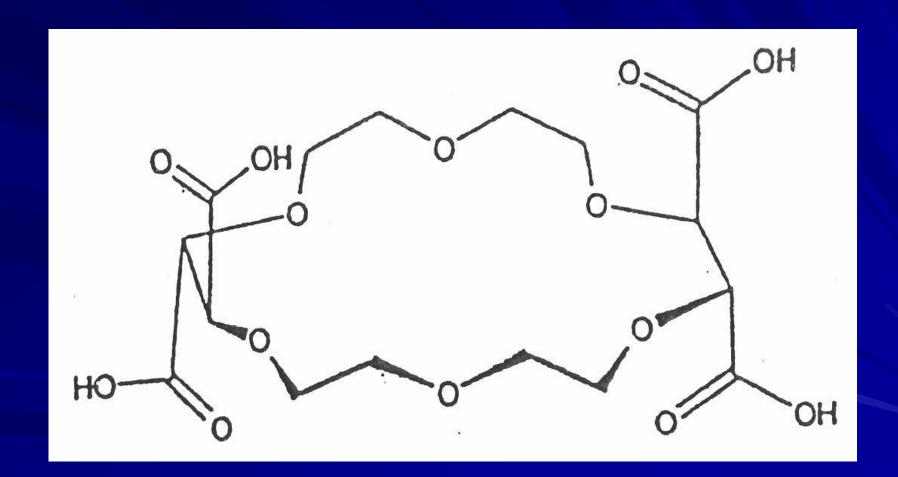
Optical Isomers

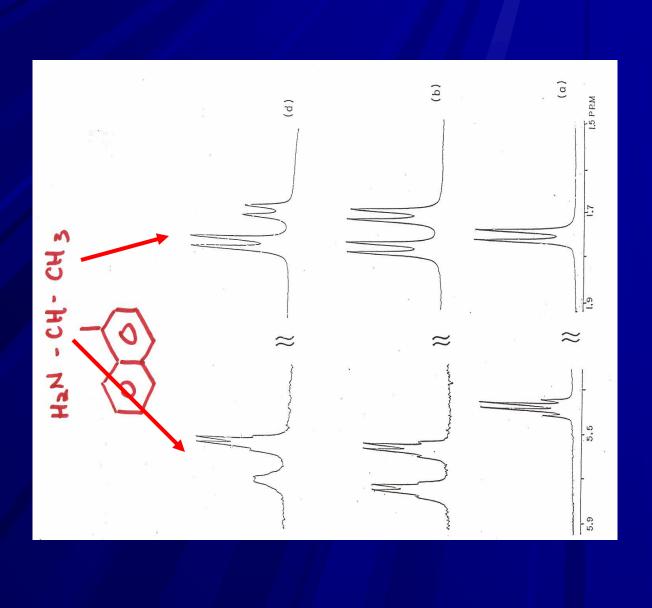
Chirality



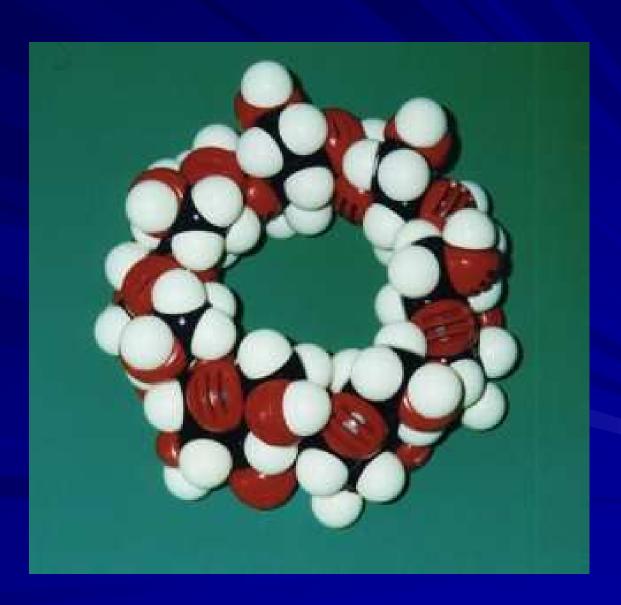


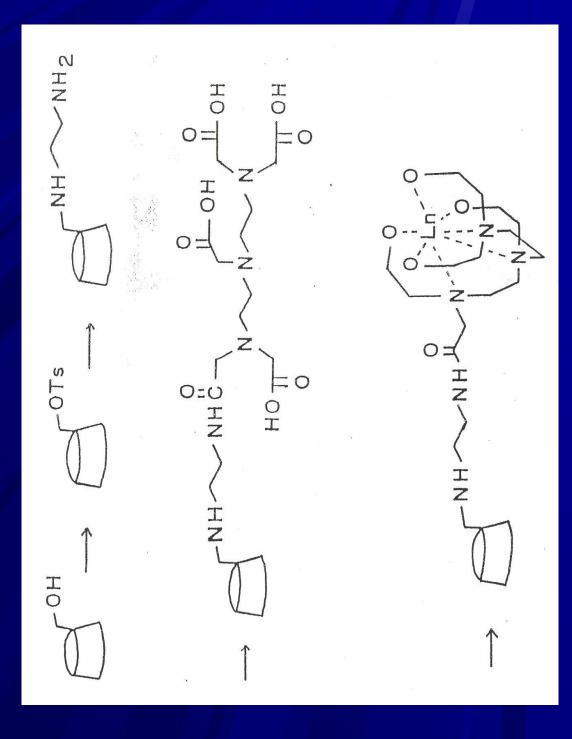
Random Bit of Chemical Trivia


Organic = $(RBCT)^n$


Where n is a very large number

Ethanol




Crown Ether

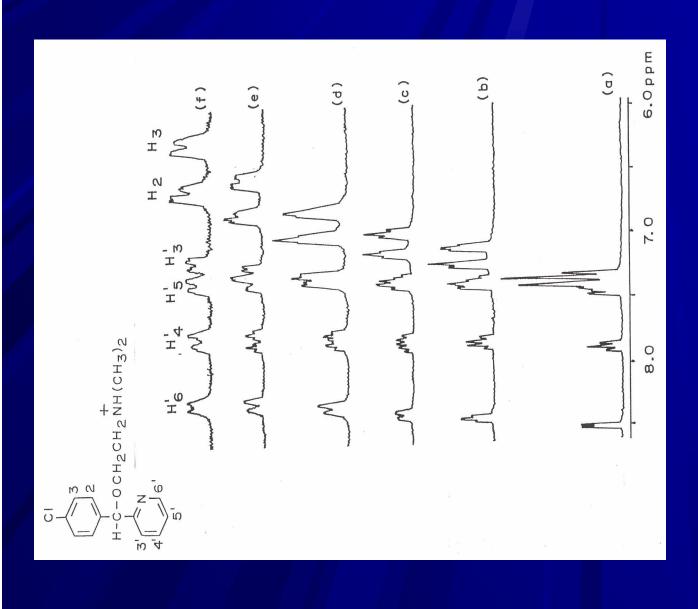

β-Cyclodextrin

Fig.	(4) (5)		*0				/	PER	IODI	C	CH	ART	· OF	TH	E E	ELE	EME	NTS	INCOT
IA	ΪA	ШВ	IVB	VВ	VIB	VIIB	/	VIII]	IB -	IIB	ЩА	IV.	A ·	۷A	VIA	VIIA	INERT GASES
1 H 1.00797 ±0.00001		***	**************************************							September 1								1 H 1.00797 ±0.00001	2 He 4.0026 0.00005
3 Li 6.939 ±0.0005	Be, 9.0122 ±0.00005												5 B 10.81 ±0.00		115 14	.0067 0.00005	15.9994 ± 0.0001	9 18.9984 ± 0.00005	10 Ne 20.183 ±0.0005
11 Na 22.9898 ±0.00005	12 Mg 24.312 ±0.0005						400						13 Al 26.981 ±0.0000		i 86 30	15 P 0.9738 0.00005	16 S 32.064 ±0.003	17 C1 35.453 ±0.001	39.948 ± 0.0005
19 K 39.102 ±0.0005	20 Ca 40.08 ±0.005	21 SC 44.956 ±0.0005	22 Ti 47.90 ±0.005	23 V 50.942 ±0.0005	24 Cr 51.996 ±0.001	25 Mn 54.9380 ±0.00005	26 Fe 55.84 ±0.00	58.93	32 58.	i (29 Cu 3,54 0.005	30 Zn 65.37 ±0.005	31 Ga 69.72 ±0.00	72.5	9 7	33 As 4.9216 0.00005	34 Se 78.96 ±0.005	35 Br 79.909 ±0.002	36 Kr 83.80 ±0.005
37 Rb 85.47 ±0.005	38 Sr 87.62 ±0.005	39 Y 88.905 ±0.0005	40 Zr 91.22 ±0.005	41 Nb 92.906 ±0.0005	42 Mo 95.94 ±0.005	43 TC (99)	44 Ru 101.0 ±0.00	7 Rh	D P 106	d 4	47 Ag 7.870 0.003	48 Cd 112.40 ±0.005	49 In 114.82 ± 0.000		n 59 1	51 5b 21.75 0.005	52 Te 127.60 ±0.005	53 126.9044 ± 0.00005	34 Xe 131.30 ±0.005
55 Cs 132.905 ±0.0005	56 Ba 137.34 ±0.005	57 * La 138.91 ±0.005	72 Hf 178.49 ±0.005	73 Ta 180.948 ±0.0005	74 W 183.85 ± 0.005	75 Re 186.2 ±0.05	76 Os 190.2 ±0.0	5 Ir	P 195.	t /	79 AU 6.967 0.0005	80 Hg 200.59 ±0.005	81 204.3 ±0.00		19 20	83 Bi 8.980 0.0005	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr	88 Ra	*89	*La	anthanum :	Series	1 48		\$B											
(223)	(226)	(227)	7		59 Pr 140.907 ±0.0005	60 Nd 144.24 ±0.005	61 Pm (147)	62 Sm 150.35 ±0.005	63 Eu 151.96 ±0.005	64 Gd 157.25 ±0.005	158		66 Dy 162.50 ± 0.005	67 HO 164.930 ±0.0005	68 Er 167.26 ±0.005	168. ± 0.0	934 Y	70 7 6 L 3.04 174	U .97
			†Ai	ctinium Se	ries											-			
() Numbers in most stable Atomic weights values of the C	or most com	on isotope. conform to the	1961	90 Th 232.038 ± 0.0005	91 Pa (231)	92 U 238.03 ± 0.005	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	E	97 3K 47)	98 Cf (249)	99 Es (254)	100 F m (253)	10 V (25	d N	02 10 0 L3 53) (25	\$67

Lanthanides

Education is what's left over after you've forgotten everything that you learned.

Knowledge outcomes — "...particular areas of disciplinary or professional content that students can recall, relate, and appropriately deploy."

Research Experience

Knowledge outcomes — "...particular areas of disciplinary or professional content that students can recall, relate, and appropriately deploy."

Skills outcomes – "the learned capacity to do something – for example, think critically, communicate effectively, productively collaborate, or perform particular technical procedures – as either an end in itself or as a prerequisite for further development

Research Experience

Skills outcomes – "the learned capacity to do something – for example, think critically, communicate effectively, productively collaborate, or perform particular technical procedures – as either an end in itself or as a prerequisite for further development

Affective Outcomes – "..usually involve changes in beliefs or in the development of particular values, for example, empathy, ethical behavior, self respect, or respect for others."

Research Experience

Affective Outcomes – "...usually involve changes in beliefs or in the development of particular values, for example, empathy, ethical behavior, self respect, or respect for others."

Learned abilities — "..typically involve the integration of knowledge, skills, and attitudes in complex ways that require multiple elements of learning. Examples embrace leadership, teamwork, effective problem-solving, and reflective practice"

Research Experience

Learned abilities — "...typically involve the integration of knowledge, skills, and attitudes in complex ways that require multiple elements of learning. Examples embrace leadership, teamwork, effective problem-solving, and reflective practice"

From:

Ewell, P.T., Accreditation and Student Learning Outcomes: A Proposed Point of Departure, Council for Higher Education Accreditation (CHEA) Occasional Paper, Washington, DC, September 2001

Analytical Chemistry Course

- Analysis of benzene and toluene in air
- Analysis of trihalomethanes in drinking water
- Amino acid content of foods (popcorn and beer)
- Caffeine, theophylline, and theobromine levels in chocolate
- Analysis of nitrate and nitrite in hot dogs
- PAHs in burgers, oysters, diesel exhaust and wood smoke
- Toxic metals in sludges from waste-water treatment plants

Cooperative Learning

- Class divided into small groups (3-5)
- Presented with a problem or question
 - I serve as a facilitator
 - If one student sees the point, she or he is to explain it to the others
 - When the groups appreciate the point, I call timeout and highlight the concept

Advantages of Cooperative Learning

- More "teacher" resources because the students are teachers as well
- Less formal
- Active learning I know what they do/don't understand they know what they do/don't understand
- Students spend more time on class material
- Cooperation, not competition
- Students learn more

Outcomes of Cooperative Learning from Prior Research Studies

- Statistically significant improvements in academic achievement
- Better reasoning and critical thinking skills
- Proposed more new ideas when presented with problems
- Transferred more of what was learned in prior situations to new problems
- Reduced levels of stress

- Promotes more positive attitudes toward subject and instructional experience – faculty get to know students better
- Decreased absenteeism
- Improved student commitment
- Greater motivation toward learning
- Better student retention (especially for women and minorities)
 - -Socially involved
 - -Academically involved

Introductory Course

- Thematic version of general chemistry fundamentals of chemistry related to the study of the environment
- Counts for the chemistry major
- Pre-requisite for all upper-level chemistry courses
- 60 students in class (20/lab)

Course Goals

- Learn fundamental concepts of chemistry
- Learn that science does not know all the answers
- Participate in and learn about the process through which scientists undertake investigations and create knowledge
- Learn in interaction with, rather than in isolation from, other students
- Appreciate that science occurs in a social context

Laboratory Project

Do plants grown in soil contaminated with lead take up more lead?

Does the uptake of lead vary with the acidity of the rain water?

Some questions the students need to answer:

- What to grow?
- What soil to use?
- How to mimic acid rain?
- How much lead to add?
- What watering schedule?
- What to use as a control?

Some advantages of the project:

- Conduct a real investigation
- Ask/answer questions
- Design experiments
- Unanticipated problems
- Teamwork
- Communication Informal/formal
- Opportunity for leadership

Uncertainty

 26 of 29 contaminated samples had higher lead
 -other three?

Acidity trend is inconclusive

Summary Comments

We need to design an undergraduate curriculum in which students begin scholarly-like activities in their first year and progress through to an original project by their senior year

We need to encourage cooperation and collaboration among our students

