Initiating and Sustaining a Research Program at a Predominantly Undergraduate Institution

Thomas Wenzel
Bates College
Collaborators

Richard Bauer Estelle Lebeau Olaf Larsen Catherine Dignam
John Hart Jeff Souza Erika Timperman Weslene Talmadge
Michael Donatelli Karen Sternfeld Jeff Troughton Allison Wensley
Joshua Schultz Karen Townsend Dave Richard Lauren Randall
Dan Lalonde Matt Bogyo Denby Johnson Jess Ciak Renee Blacken
Maureen Joseph Adam Spey Allison Slaughter Susie French
Anne Ruggles Bob Provencal Amanda Colby Aleena Ali
Beth Manning Alice Brecht Laura DiLorenzo Monique Brown
Laura O'Meara Kayla Zomlefer Lee Wacker Jim Maldonitis
Jim Weissman Sarah Dunham Meta Mason Jan Collins
Elsie DiBella Sharon Rapkin Jolene Thurston Patrick Cunningham
Joe Zaia Daphney Frederique Nicole Ryan Matt Chudomel
Mary Ann Stevens Rebecca Miles David Sek Shawna-Kaye Lester
David Wasserman Hans Vissers Gudrun Mirick Lily Conover
Lori St. Cyr Tom Light Rayann Richard Ann Lovely
Jim Oates Amy Bean David Vensel Madeline Weber
Mark Russett Keith Rowls Kristin Smith Katelyn Provencher
Larry Yarmaloff Brooke Perrins Hilary Domush Courtney O’Farrell
Lisa Collette Sarah Coulter Sandy Rennick Brad Wenzel
Dierdre Dahlen Sarah Weinstein Bailey Freeman Katie Hagan
Sue Hendrickson Hans de Koning Stella Aniagyei Ngoc Pham
Phil Bonasia Rhonda Crosson Sonia Shariff Chloe Bourne
Tom Brewitt Kate Brogan James Wilcox Ryan Rollo
Kirk Cameron Melissa Roan Ginger Readling Cora Chisholm
Bob Keenan Beth Pond Kristelle Hicks Thao Nguyen
Celeste Morin Rogier Evertsen Jason Zopf Anthony Timberman
Dave Baker Melissa Vining Chris Richards Rebecca Clark
Charlotte Otto Laura Wright Dave Reingold Bert Holmes

Ellen Keiter Richard Keiter Bob Lichter
Funding Agencies!

- Research Corporation
- Petroleum Research Fund
- National Science Foundation – RUI, MRI, CCLI
- Camille and Henry Dreyfus Foundation
Is this a great country, or what?

- You can send a document to someone asking for thousands of dollars and they just may give it to you!
Of course ...

- They often don’t give you the grant

- My first rejection was from PRF – booooo!

- Fortunately the folks at Research Corporation were far more astute in their judgment – yeaaaaaaaaa!
1981 - Getting started with

- a generous start-up package – $0
 - Pep talk from my dean – PRICELESS!
- a spacious research laboratory – 180 sq.ft. and one “hood”
- little to no equipment
- a light teaching load – 7 courses a year and I taught an overload in 2 of my 3 first years
Strategy (1981-1989)

- I had to write grant proposals (first two submitted after I was hired but before my first year at Bates)
- I wanted to start three different projects
 - Lanthanide luminescence detection in LC
 - Selective pre-column adsorbents for GC
 - NMR shift reagents
Fortunately

- Research Corporation awarded me a grant - $10K (Like winning the lottery!)
- Money for a single summer student, summer salary for me, LC detector, supplies
- Which I leveraged into three summer students
 - Work-study funds through Bates
 - One student on each project
In that first summer

• I resubmitted to PRF for selective sorbent work
• PRF funded it – yeaaaaaaaah!
• For second summer – I had my own money for two students – and two increments of my own summer salary
• These students picked up where the first set left off!!!!
Lanthanide Luminescence

- Eu(III) and Tb(III)
 - Excite organic
 - Energy transfer to lanthanide
 - Lanthanide luminescence
- Never used in LC detection

But no LC!
Equipment

- LC – NSF Instructional Equipment grant
- Fluorescence spectrophotometer – NSF research equipment grant
- Renewal support from Research Corporation
LANTHANIDE IONS AS LUMINESCENT CHROMOPHORES FOR LIQUID CHROMATOGRAPHIC DETECTION

ELSIE E. DiBELLA, JAMES B. WEISSMAN, MAUREEN J. JOSEPH, JOSHUA R. SCHULTZ and THOMAS J. WENZEL*

Department of Chemistry, Bates College, Lewiston, ME 04240 (U.S.A.)
(Received February 27th, 1985)

SUMMARY

The chloride and nitrate salts of Tb(III) and Eu(III) can be employed as luminescent chromophores for reversed-phase liquid chromatographic detection. The method is applicable to specific compounds that are capable of either transferring energy to, or quenching the background luminescence of, a lanthanide ion. Addition of the lanthanide ion is achieved through a post-column reaction device. Mobile phases containing methanol and acetonitrile can be employed. Significant quenching of the lanthanide luminescence is observed in mobile phases containing water. This quenching can be reduced by the addition of potassium acetate. Higher temperatures increase the intermolecular energy transfer resulting in an increase in the sensitivity. Oxygen quenches the lanthanide luminescence and measures to remove oxygen from the mobile phase must be taken. The selectivity of the energy transfer can be used to both simplify chromatograms and aid in the identification of compounds.
LIQUID CHROMATOGRAPHIC AND FLOW INJECTION ANALYSIS OF TETRACYCLINE USING SENSITIZED EUROPIUM(III) LUMINESCENCE DETECTION

THOMAS J. WENZEL*, LISA M. COLLETTE, DEIRDRE T. DAHLEN, SUSAN M. HENDRICKSON and LAWRENCE W. YARMALOFF

Department of Chemistry, Bates College, Lewiston, ME 04240 (U.S.A.)
(First received April 19th, 1988; revised manuscript received July 19th, 1988)

LANTHANIDE IONS AS LUMINESCENT CHROMOPHORES FOR THE LIQUID CHROMATOGRAPHIC DETECTION OF POLYNUCLEOTIDES AND NUCLEIC ACIDS

THOMAS J. WENZEL* and LISA M. COLLETTE
Department of Chemistry, Bates College, Lewiston, ME 04240 (U.S.A.)
(First received June 22nd, 1987; revised manuscript received October 16th, 1987)
Should I feel good about this?

Journal of Chromatography, 482 (1989) 351–359
Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

CHROM. 21 831

LANTHANIDE LUMINESCENCE QUENCHING AS A DETECTION METHOD IN ION CHROMATOGRAPHY

CHROMATE IN SURFACE AND DRINKING WATER

M. SCHREURS, G. W. SOMSEN, C. GOOIJER*, N. H. VELTHORST and R.W. FREI
Department of General and Analytical Chemistry, Free University, De Boelelaan 1083, 1081 HV Amsterdam (The Netherlands)
Took the bull by the horns

- Wrote to Roland Frei – pointed out that I was no competition
- Could I visit? Yes.
- Went for three weeks the next summer
- Eventually led to a student exchange program – 4 Dutch students to my lab, 2 Bates students to the Netherlands
But ...

- A possible long-term research project got shortened
- 5 publications instead of 10 (?)
Selective Adsorbents

-Metal is Lewis acid

-Will bind to Lewis bases

-Binding depends on metal and R group – can adjust the selectivity
Except ... we had no GC with a valve system

- Adsorption at elevated temperature – so string together pre-columns in a GC oven
- Inject sample/wait a few minutes/cool oven
- Remove/cap pre-columns
- Put in regular GC column
- Cool oven to -50 C using blocks of dry ice
- Syringe needle adaptor on pre-column/wrap with heat tape/desorb into GC/run chromatogram
Support

- PRF – Grant and renewal
- NSF Research Equipment Grant
 - GC with four-valve system

Journal of Chromatography, 396 (1987) 51–64
Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

CHROM. 19 470

METAL CHELATE POLYMERS AS SELECTIVE SORBENTS FOR GAS CHROMATOGRAPHY

THOMAS J. WENZEL*, LAWRENCE W. YARMALOFF, LORRAINE Y. St. CYR, LAURA J. O’MEARA, MICHAEL DONATELLI and RICHARD W. BAUER

Department of Chemistry, Bates College, Lewiston, ME 04240 (U.S.A.)

(Received January 12th, 1987)
Fig. 3. Chromatograms for a test mixture of compounds: (a) unretained, (b) retained by Cu(dihed) at 100°C and (c) unretained by Cu(dihed) and retained by La(dihed) at 100°C. A = alcohols, K = ketones, E = esters, PY = pyridine. Thermally focussed at −50°C for 5 min and then 3°C/min to 150°C. See Experimental section for column and sorbent description.
NMR Shift Reagents

- Beg and borrow funding – tried 4 times to get NSF support but rejected each time
- R24A NMR spectrometer – DRIFT!
- Varian 360 (Institution purchase)
- Lanthanide-silver complexes as shift reagents for olefins and aromatics
- Lanthanide tetrakis(β-diketonate) anions as shift reagents for organic cations
- Several publications

- Had let funding lapse for lanthanide luminescence (LL) detection and selective sorbent (SS) work
- Submitted NIH request for LL work
- Submitted PRF request for SS work
- Black February - both rejected on consecutive days
- Resubmitted both in coming year – two more rejections
Problem (1989)

- Not much left for me to do on lanthanide luminescence – others have done some interesting things since, but I did not have those ideas
- Not much left to do on selective sorbents using metal polymers
- High field NMR spectrometers were making conventional NMR shift reagents obsolete
Solutions(1989)?
(Tenured Associate Professor)

- Become an administrator
- Devote myself to service – appointed science division chair at Bates in 1989 (between sci div, chem, ES – Chair 12/20 years)*
- Undertake significant curriculum reform*
- Help others to do research at PUIs*
 - Help them write proposals more competitive than mine
- Take a break and rest on my laurels (14 research pubs/book/book chapter from Bates)
1987
Thank you Bob Sievers!

Swore I’d never do that again
But ...

- I thoroughly enjoy doing research – the excitement of discovery
- I thoroughly enjoy working with undergraduate students
- I think it is imperative that undergraduates have the chance to work on projects that are intended for publication – they get a better educational experience doing so
As luck (?) would have it

- I received a proposal to review about a week after Black February
- Study involved cyclodextrins – chiral discriminators
- Hmmm – could I attach paramagnetic lanthanide ions to cyclodextrins and use them as chiral NMR shift reagents?
Chirality – non-superposable mirror images
DON'T DO DRUGS

DO DRUGS

DRUGS
A STAR TREK NOVEL

SPOCK MUST DIE!

BY JAMES BLISH

AN EXCITING NEW STORY OF INTERPLANETARY ADVENTURE

INSPIRED BY THE CHARACTERS GENE RODDENBERRY CREATED FOR THE FAMOUS TELEVISION SERIES
Chiral NMR Solvating Agents

- Optically pure - non-covalent interactions

\[
\begin{align*}
\text{CSA} + (R)\text{-Sub} &= \text{CSA}-(R)\text{-Sub} \quad K_R \\
\text{CSA} + (S)\text{-Sub} &= \text{CSA}-(S)\text{-Sub} \quad K_S
\end{align*}
\]

- Reactions under fast exchange – time average of bound and unbound forms

- Mechanism of discrimination
 - Diastereomeric complexes
 - \(K_R\) different from \(K_S\)
Cyclodextrins

- Cyclic oligosaccharides
- Glucose units
 - $6 - \alpha$
 - $7 - \beta$
 - $8 - \gamma$
• Not the scheme I first proposed
• But what we eventually completed
Good idea?

- Spoke with organic chemists at Duke
- Submitted proposal to Research Corporation – funded – yeaaaaaaaaa!
- Began synthesis of cyclodextrin system
- Also pursued some low-hanging fruit
Low-hanging Fruit?

- Reconsider equilibria

 $$\text{CSA} + (R)\text{-Sub} = \text{CSA}-(R)\text{-Sub} \quad K_R$$

 $$\text{CSA} + (S)\text{-Sub} = \text{CSA}-(S)\text{-Sub} \quad K_S$$

- $K_R \neq K_S$

- Instead of binding the lanthanide to the CSA, add a lanthanide species that associates with unbound form of the substrate (first shown by Bill Pirkle) – led to several publications
Next level?

- Gave talks on the work – got enthusiastic response
- Submitted NSF-RUI grant – funded – YEAAAAAAAAAAAAAAAAAAAAA!
 - Cindy Larive
- Have now had six cycles of NSF funding for chiral NMR shift reagents - two grants for high-field NMR spectrometers
Cyclodextrin System – did get derivatives made

Dan Armstrong
Cyclodextrins – recent work

- Carboxymethylated cyclodextrins

\[\text{Cyclodextrin} \quad n = 5, 6, \text{ or } 7 \]

1. NaH, 60% in oil DMF, r.t. 48 hrs
2. NaIOAc DMF, rt. 48 hrs
3. Acetone

Selective Secondary Derivative

\[\text{Indiscriminate Derivative} \]

1. NaOH, NaIOAc
2. Methanol

\[\text{Selective Primary Derivative} \]

- Cationic cyclodextrins
Crown Ethers

- Studied several crown ethers
- International collaborations

(18-crown-6)-2,3,11,12-tetracarboxylic acid
Primary Amines

Secondary Amines
Calix[4]resorcinarennes

1. EtOH/HCl
 100° C, 24 hrs
2. dialysis

100° C, 24 hrs

Tetrasulfonated Calix[4]resorcaren, "SCR"

L-proline (SCR-Pro)
N-methyl-L-alanine (SCR-Ala)
N-methyl-L-valine (SCR-Val)
N-methyl-L-leucine (SCR-Leu)
SCR-Pro

Water-soluble
Other Calix[4]resorcinarenes

- S-MOP
- bis-MOP
- PyrMOH

- SCR-cis-4-D-hydroxy-proline (3)
- SCR-cis-4-L-hydroxy-proline (4)
- SCR-trans-4-L-hydroxy-proline (5)

- SCR-trans-3-L-hydroxy-proline (6)
- SCR-D-nipeptic acid (7)
Review article – *Chirality*, 2003

- Highly cited
- Sent many, many manuscripts to review
- Asked to be on editorial board of *Chirality*
- Asked to write a book on chiral NMR shift reagents
 - After a 20-year lapse, and in a moment of insanity – I said yes

Nina Berova
2007

Definitely worth doing

but I will never write another book
Selective gas-phase capture of explosives on metal β-diketonate polymers

Scott D. Harveya,*, Thomas J. Wenzelb

a Pacific Northwest National Laboratory, Richland, WA 99352, USA
b Bates College, Lewiston, ME 04240, USA

Selective retention of explosives and related compounds on gas-chromatographic capillary columns coated with lanthanide(III) β-diketonate polymers

Scott D. Harveya,*, Thomas J. Wenzelb

a Pacific Northwest National Laboratory, National Security Directorate, MSIN: P7-07, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352, USA
b Bates College, Department of Chemistry, Lewiston, ME 04240, USA
Closing Thoughts: Producing (i.e., Publishing) Research at a PUI

- Write grant proposals/be thick skinned
- Have summer students who
 - continue the work in the academic year
 - pick up projects where others left off
- Network – present work at smaller, specialty conferences
- Be entrepreneurial
Thanks again to:

- My collaborators (especially the students)
- Supportive colleagues from research universities
- Funding agencies
- Colleagues who I have had the privilege of working with during my career to promote research at PUIs