Lesson Two: Math Blackboard, Logic, Quantifiers and Alignment Math Blackboard Symbols

We use \mathbb to display some common sets of numbers.

naturals: \mathbb{N} rationals: \mathbb{Q} reals: \mathbb{R}

positive reals: \mathbb{R}^+

Logic and Quantifiers

The propositions $P \Rightarrow Q$ and $(\sim P) \lor Q$ are equivalent. The proposition $R \land (\sim R)$ is a contradiction; it is always false. The negation of $(\forall n \in \mathbb{N})(n \text{ is prime})$ is $(\exists n \in \mathbb{N})(n \text{ is not prime})$.

Alignment

We can also do negations step by step. To make things line up nicely, we use LATEX's built-in "align" environment.

$$\sim [(z \text{ is odd }) \lor (z \text{ is even})] \iff [\sim (z \text{ is odd })] \land [\sim (z \text{ is even})]$$

 $\iff (z \text{ is not odd}) \land (z \text{ is not even})$

Exercise Two: Math Blackboard, Logic, Quantifiers and Alignment

The proposition $(P \vee Q) \vee (\sim P \wedge \sim Q)$ is a tautology because it is always true.

[To typeset some of the following symbols, you may need to use the Help menu. Also, try using the \not command]

$$\sim [(\exists n \in \mathbb{N})(\forall m \in \mathbb{N})(n \le m)] \iff (\forall n \in \mathbb{N}) \sim [(\forall m \in \mathbb{N})(n \le m)]$$
$$\iff (\forall n \in \mathbb{N})(\exists m \in \mathbb{N}) \sim (n \le m)$$
$$\iff (\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(n \not \le m)$$

[Typeset the following. Then decide if the statements are equivalent.]

$$(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x = -y)$$
$$(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(x = -y)$$