Experimental Uncertainty

Abstract

This is intended as a brief summary of the basténehts of uncertainty analysis, and a handy
reference for laboratory use. It provides sommelgary "rules-of-thumb™ which are satisfactorydee in an
introductory physics laboratory.
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Measurement Uncertainties and Uncertainty Propagatn

In most experiments, certain quantities are medsamd then other quantities are determined from the
measured data. For example, we might measurenigénland width of a room, and then determineds by
multiplication. Associated with each measured gityais a "measurement uncertainty”. When a fieallt is
determined from measured quantities, these measatamcertainties lead to an uncertainty in thévddr
result. The procedure by which an experimenteerd@hes the uncertainty in a final result from the
measurement uncertainties is called "error andlysis'propagation of uncertainty”.

Types of Uncertainty (Absolute, Fractional, PercentRelative)

Theabsolute uncertaintyin a quantity is the actual amount by which thardity is uncertain, e.q.if
L =6.0 £ 0.1 cm, the absolute uncertaintiziis 0.1 cm.Note that the absolute uncertainty of a quantity ha
the same units as the quantity itself.

Thefractional uncertainty is the absolute uncertainty divided by the qugiitself, e.g.ifL =6.0 +
0.1 cm, the fractional uncertainty inis 0.1/6.0 = 1/60Note that the units cancel in this division, sottha
fractional uncertainty is a pure number.

Percent uncertainty is fractional uncertainty expressed as a perdentfractional uncertainty
multiplied by 100. IfL =6.0 £ 0.1 cm, its percent uncertainty is 1.7%.

The word "uncertainty”, by itself, normally meareb%olute” uncertainty. Fractional or percent
uncertainties are both called "relative” uncertambecause they relate the size of the uncertaititg size of
the result itself. While not normally used in theesentation of data or experimental results, ivelat
uncertainties are often useful in intermediateestanf "error analysis" calculations.

Rule#1: Express the uncertainty in each of your measurgsner derived results as
an absolute uncertainty, using the same units figr quantity and its
associated uncertainty.



Measurement Uncertainties

The first step in determining the reliability of axperiment is to evaluate the measurement
uncertainties associated with each measured qua¥ihile in many cases, measurement uncertailygdso
the particular instruments used, it may also depmntiuman limitations of the experimenter or on som
randomness in the effect being measured.

As an example of instrumental measurement uncéytaionsider a measurement of the length of this

page using a meter-stick. When the zero of thens#itk is placed at the top of the page, theobotppears

to lie between 27.9 and 28.0 cm, although someathaér to 27.9 cm. Since the marks on the metse-ate

0.1 or 0.2 centimeters wide, and placing the zetloestop edge of the paper might be "off" by Ghtaneter,
the experimenter might feel confident saying thatgage's length to the nearest tenth of a cerstinse27.9
cm, but would certainly feel that specifying thedéh to the nearest hundredth centimeter is riskgnce, it
would be prudent to state the length as 27.9 €6@rtimeters. This situation illustrates two basles-of-
thumb:

Rule #2: Make uncertainty estimates large enough to giwgself a margin of safety.
You should feel confident that the "real valuethefmeasured quantity lies
somewhere within the uncertainty range you specify.

Rule #3: The measurement uncertainty due to an instrurtself may be assumed
equal to the smallest scale division of the insegatn

A common situation in which measurement uncertaiatgtes more to human limitation than to
instrumental error is the measurement of time \aitrelectronic stopwatch. The watch can measuf@lto
second. When a careful experimenter makes fivaragpmeasurements of the time for a ball to rii{ed
distance down an inclined plane, the results &edylito look like this: 4.63, 4.69, 4.64, 4.56da#.70
seconds. While each time is measured to .01 setwrdnge of values is 4.70 minus 4.56, or 0.14 seconds.
In another common experiment, a spring gun firpsogectile horizontally from the edge of a lab &blThe
horizontal distance from the table's edge to thu winere the projectile hits the floor is easilyasered to
within £ 1 cm, but due to an inherent randomneghiénoperation of the spring gun, typical resuitsrf a
series of five trials using the same apparatus nigh 256, 239, 263, 252, and 253 cm. In bothethes
situations, the best an experimenter can do isaalkeverage of the measurements, namely 4.644dsand
252.6 cm, respectively. But from the time rang8.@# seconds and the distance range of 263 - 23%m,
the experimenter might reasonably estimate thertaioty in time to be 0.14/2 = 0.0% 0.1 seconds and
distances uncertainty to be 24/2 =1210 cm. The value for each would then be writed.& + 0.1 and 250
+ 10 cm. Notice that the uncertainties are related in only @proximate way to the ranges of values
obtained in a series of 5 measuremeartsl that the uncertainties in both cases make it uspeable to state
the results to more than two "significant figur¢is& 4.6 and 2.5 x

Rule #4: If a measurement is not reproducible within instrental uncertainty, the
measurement uncertainty should be estimated frardahge of values
obtained in a series of five (or more) trials.

Rule #5: No quantity should be stated to more signifidanires than are justified by
its associated uncertainty.



Uncertainty Propagation: Worst Case Method

The most straightforward way to find the uncertaintthe final result of an experimenti®rst case
error analysis a method in which uncertainties are estimateth filoe difference between the largest and
smallest possible values that can be calculated fhe data. As an illustration of the method, siggpwe
measure the length and width of this page to b@ 20.1 cm and 21.6 £ 0.1 cm, respectively. THemhost
probable value for its area is (27.9)(21.6) = 6026 cm. But the largest possible value ("worsetha
consistent with the data is (28.0)(21.7) = 607.6req Similarly, the smallest possible area is§Q21.5) =
597.7 sq cm. Since the actual area might be ampaietween these extremes, it is reasonable ®tbit
result as 603 £ 5 sq cm.

In a second example, the mass and volume of a sasfipil are measured as 7.54 +0.01 gand 10.0 +
0.1 cnf, respectively. The density of this oil is mostlpaibly (7.54 g)/(10.0 cth=.754 g/cm, but might be
as large as (7.55 g)/(9.9 &= .763 g/cmor as small as (7.53 g)/(10.1 Y .746 g/lcmt Note that in this
case we must use thmallest possible volume when calculating tlaegest possible densityThis range of
possible density values suggests that the finaltreBould be expressed as 0.75 + 0.01 &/cm

Rule #6: When aresult is calculated from several measgrehtities, its uncertainty
is approximately half the difference between thegdat and smallest
possible results that could be obtained from thesuements and their
associated measurement uncertainties.

Differential Error Analysis

A second, and somewhat more formal, method ofitrgéte propagation of uncertainties is related to
differential calculus. When an experimental resutiepends on several independent measured quatitie
Yy, Z, ...) in such a way thétcan be written as a differentiable function of theasured quantities, the change
in f which results from small changes in the measuadales can be determined from the calculus of partia
derivatives:

f = f(x, yz,..)
df :idx+idy+ﬂdz+...
0X ay 0z

Since an uncertainty can be interpreted as a naitgan which a quantity is free to change, we can
relate the absolute uncertaintyficall it Af) to the absolute uncertaintiag, Ay, Az, etc, in a simple way:

Rule #7: If a final result/f, is a differentiable function of several measujadntities
(x, v, z, ...), the uncertainty irf relates to measurement uncertainties
according to:

of

X
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—AV+
ay y
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0z

Af = AX+ Az +...

The absolute value signs (along with the factthgt z, etc are positive by definition) guararttest
the contributions of different measurement uncetigs to the uncertainty of the final result areajs
additive. This is in contrast to the calculusmdigtic functions, in which variables can changstich a way
as to produce canceling effects on the functiagifits



Special Cases--Results of Differential Error Analyis

We now proceed to look at some special cases & ®Rulin an attempt to find some simple rules-of-

thumb:
Df=x+y ﬂ:1 ﬂ:1 Af = AX + Ay
ox oy
2)f=x-y ﬁ:1 ﬂ:—1 Af = AX + Ay
ox oy
3)f=xy of _ of _ Af = yAX + XAy

—= — =X
0X y oy

4)f=§ ﬂ:l ﬂ:—i Af = le+l2Ay
y

ox 'y a Yy y y

TheAf in each case is the absolute uncertainty fror #3, the fractional uncertainty turns outawe
a particularly simple form:

A_f :le-FlAy
f Xy Xy
X oy

The fourth example also yields a simple resultéflaok at the relative error:

A_f :le-FX_ysz
f yX Xy
:g+ﬂ
X oy

These four examples yield two simple rules:

Rule #8: The absolute uncertainty of the sum or differeafévo quantities is the
sum of their absolute uncertainties.

Rule #9: The relative uncertainty of the product or quatief two quantities is the
sum of their relative uncertainties.



Graphs and Error Flags - Uncertainty in the Slope 6a Line

In a typical experiment to determine velocity, phasition of an object is recorded every second.
Suppose the uncertainty in each position measurame® cm, the uncertainty in each time measurgiise
+ .25 s, and the data for a five-second intervajiven by the table to the left of the followingytire.
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In the graph to the right, the uncertainties irhedata point are indicated by "error flags”, theigal
flags are for uncertainty in distance, horizontaltfme. The lengths of this flags correspondhouncertainty
ranges. For example, since the poirtta(3.0 + 0.3) seconds correspondg to(42 + 5) cm, the error flag
extends from 37 cm to 47 cm in the vertical di@ttiand from 2.7 sec to 3.3 sec in the horizoritattdon.

The solid line drawn through the data points wéisnesed by an experimenter to be the "best fit" to
this data. The slope of this liné,= dx/dt = 11 cm/sec, represents the most probalile of the velocity. But
there are many other straight lines which couldeHasen drawn through the error flags, and hence tha
range of possible slopes consistent with the dBbeestimate this uncertainty in the slope, we draw'worst
case" lines, i.e.the line of greatest slope anditieeof least slope which still pass through nafghe error
flags. If you think about the slope being giverrigg/run, then to get a "max"” slope, you will néee "max"
rise/'min" run. The worst case lines are showd@ed lines in the figure, and have slope¥ gf; = 13
cm/sec an ., = 9 cm/sec. Given these extremes, it is reasenalaxpress the final result for the velocity as
V = (11 + 2) cm/sec.

Rule #10: The uncertainty in the slope of a straight liftetd experimental data is
approximately half the range of slopes of the $allastraight lines which
can be drawn through the data error flags.



Standard Deviation and Confidence Limits

We have seen that when a measurement is not repipdelbecause of random errors, its uncertainty
can be estimated from the results of several thatsomplete theory of random error predicts tlatfvery
large number of trialsN, the distribution of results will look like thelbshaped curve shown in the following

figure.
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The peak in the curve corresponds to the averagit,pe and the curve's width is a measure of the
range of results obtained, i.e. the uncertainthéxmeasurement. X{i) is the result of thé"jtrial, we can
define the "deviation" of th&'iresult agx(i)-x], and the "standard deviations', as:

o= \/Nil g[x(i) x|

The standard deviation is defined in such a walyGBa88% of all results lie between ¢ andx + o,
95.5% of all results lie between- 26 andx + 26, and 99.7% of all results lie between 36 andx + 3.
Thus, if you make a very large number of measurésnegou have "68% confidence" that a future
measurement will fall withit ¢ of the average. In this sense, the standard titmviean be regarded as the
uncertainty in one measurement, for example, thé measurement you will make.

A more useful quantity is the "uncertainty in tveage" of alN measurements. What this meansiis,
if you were to take many "sets" Hfmeasurements and find the average for each, lvs& tdgether would the
averages be? The answer is that the averaged eudlistributed in a bell shaped curve of theindout the
standard deviation of the averages would be snthider the standard deviation of the data in any'se&.
This is why it's better to take a large number ebsurements and find the average than to justtakegle
measurement! It turns out that the uncertaintiidnaverage igN times smaller than the standard deviation.

Rule #11: The uncertainty in the average of a large numbemf measurements may
be taken as the standard deviation of the dataldiiby/N.



