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We use the fourth-order Runge-Kutta method to numerically integrate the equations of motion
for a fastpitch softball pitch and in this way compute and display the trajectories of drop balls, rise
balls and curve balls. By requiring these pitches to pass through the strike zone, and by making
reasonable assumptions about the initial speed, launch angle and height of the pitch, we predict a
range of values for the lift coefficient that is consistent with values derived from experimental data.
Using the analysis of a batter’s swing given by Adair, we also discuss how to predict when a pitch
is likely to be missed (or fouled) by a batter.

I. INTRODUCTION

The game of fastpitch softball has been played since
the late 1800’s and is currently a very popular women’s
sport in both high schools and colleges. Although the
trajectories of many different spherical sports balls have
been investigated,1 those of a fastpitch softball have only
recently begun to be studied.2,3 In this paper we present
a computer model that simulates the motion of fastpitch
softball pitches. We then use this model to predict a
range of values within which the lift coefficient of a fast-
pitch softball should lie and compare this range with val-
ues obtained from experimental data. Finally, we discuss
how our model can be used to discuss when a pitch is
likely to be missed (or fouled) by a batter.

We begin by setting up Newton’s equations of motion
for a fastpitch softball and then, using the fourth-order
Runge-Kutta method, we solve these equations numeri-
cally. By assuming reasonable values for the launch an-
gle, speed and height off the ground of the softball as it
leaves the pitcher’s hand, we compute and display the
trajectories of rise balls, drop balls and curve balls. We
also determine a range of values within which the lift co-
efficients must lie in order to put any one of these pitches
into the strike zone. Next, using the time analysis of a
batter’s swing presented by Adair,4 we discuss when a
given pitch has a good chance of fooling a batter into
starting her swing before she can accurately assess the
trajectory of the ball and thus cause her to miss (or foul)
it. We end by comparing the range of lift coefficients pre-
dicted by our model to values derived from experimental
data,5 and to values that have recently been determined
for baseballs.6

II. ASSUMPTIONS AND INITIAL

CONDITIONS

The coordinate system used in our analysis has the
x axis along a horizontal line from the pitcher to home
plate, the y axis perpendicular to the ground, and the z
axis perpendicular to the x and y axes according to the
right hand rule. The origin of the coordinate system is
on the ground directly beneath the point where the ball
leaves the pitcher’s hand. The pitch is thrown from just
above the origin at an initial height y0, so the coordinates
of the launch point are x0 = 0, y0, z0 = 0.

We use spherical coordinates to describe the launch
angles of a pitch, but with the mathematician’s choice of
the labels θ and ϕ. In other words, the angle ϕ is the
angle the velocity vector makes with the z-axis, and θ
is the angle made with the x-axis by the projection of
the velocity vector in the the x−y (vertical) plane. Note
that a pitch which remains in the vertical plane (and does
not curve) has a constant angle of ϕ = 90 degrees. If the
pitch is thrown perfectly horizontally (and parallel to the
ground) it has θ = 0◦. A nice graphical representation of
this coordinate system is given online by Arnold.7

We model the motion of the fastpitch softball pitch by
assuming that once the ball leaves the pitcher’s hand it
is acted upon by three forces: gravity, air resistance and
the Magnus force.8 The magnitude of the force of gravity
is

Fgravity = mg (1)

where m is the mass of the softball and g is the gravi-
tational acceleration, whose magnitude11 is 32 ft/s2 (9.8
m/s2) and whose direction is along the negative y axis.

The magnitude of the force of air resistance is ex-
pressed in the standard form6

Fdrag =
1

2
CDρAv2 , (2)
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where CD is the drag coefficient, A is the cross-sectional
area of the ball, v is the speed of the ball, and ρ is the
density of air which, to an accuracy of two significant
figures, is 1.2 kg/m3 for temperatures within the range
of 60◦ F to 90◦ F (16◦C to 32◦C).12 The drag force acts
in the direction opposite to that of the velocity.

In order to simplify the computer code we defined the
constant

C ≡
1

2
CDρA (3)

so the drag force could be written as

Fdrag = Cv2. (4)

As discussed below, after putting in the appropriate value
for CD we found that C = 1.55× 10−3 kg/m.

The standard expression for the magnitude of the Mag-
nus force is6

FMagnus =
1

2
CLρAv2 , (5)

where CL is the lift coefficient. As we discuss in more
detail at the end of this section (and in Section V), this
force is created by the spin of the ball, and depending
upon the direction of the spin axis, it leads to pitches that
rise, curve or drop as they travel from the pitcher to home
plate. The Magnus force acts in a direction perpendicular
to both the angular and translational velocity of the ball.
More precisely, if ~ω is the angular velocity vector then the
Magnus force is in the direction of ~ω × ~v.

Putting these forces into Newton’s second law we find

mv̇x = −Cvx

√

v2
x + v2

y + v2
z , (6)

mv̇y = −mg − Cvy

√

v2
x + v2

y + v2
z

+
1

2
CLρA

(

v2

x + v2

y + v2

z

)

sin α, (7)

mv̇z = −Cvz

√

v2
x + v2

y + v2
z

+
1

2
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(

v2

x + v2

y + v2

z

)

cos α. (8)

In these equations, the superscript dot signifies a time
derivative. The x component of the velocity is denoted
by vx and similarly for the y and z components. The
direction of the Magnus force vector is specified by the
angle α, which lies in the y-z plane with α = 0 when the
Magnus force vector points along the positive z axis.

The initial speed of the pitch is vi, and the initial values
for vx, vy, and vz are given in spherical coordinates that
correspond to the coordinate system shown in Arnold:7

vx,i = vi sin ϕ cos θ

vy,i = vi sin ϕ sin θ

vz,i = vi cosϕ.

The fastpitch softball is an optic yellow sphere with
at least 88 raised red thread stitches. Although the di-
mensions of softballs vary slightly, we will assume13 that
each softball has a circumference of 12 inches (0.30 m),
a radius R = 1.9 inches (4.85 cm) and a weight of 6.5
ounces (which corresponds to a mass of 0.18 kilograms).

Some of the initial conditions will be the same for all of
the pitches we consider. The front of the softball pitching
rubber (the side closest to the batter) is 43 feet (13.1 m)
from the back of home plate13 and, unlike in baseball,
where there is a pitcher’s mound, the rubber from which
fastpitch softball pitchers throw is at the same level as
the batter. Since a pitcher is permitted to take one stride
towards the batter during her delivery, if we assume her
stride is 3.0 feet (0.91 m) then every pitch travels 40 feet
(12 m) in the direction of the x-axis from its release point
to home plate.

The ball is released from a point just above the knee
of the pitcher. As she steps forward to deliver a pitch
her knee drops so we assume the release point is 1.5 feet
(0.46 m) off the ground. This value of y0 is close to those
recorded by Nathan3 (1.8 ft, σ = 0.2 ft) from four fast-
pitch softball pitchers as they threw over 3500 pitches.
Finally, we assume the initial speed of the softball is
65 mph (29 m/s), which is consistent with the values
measured by Nathan3 (vi = 65 mph, σ = 5 mph) and
others.14

Next we want to determine a numerical value for the
drag coefficient CD. If we assume the fastpitch softball
is simply a scaled up baseball then both the baseball and
the softball will have the same CD provided they have
the same Reynolds number

Re =
ρDv

µ
, (9)

where ρ is the density of air (whose numerical value is
given just above Eq.(3)), D is the diameter of the ball, v is
the speed of the ball relative to the air, and µ = 1.85·10−5

N·s/m2 is the dynamic viscosity of air.6 To an accuracy of
two significant figures the diameter of a regulation base-
ball is 2.9 in, so a softball moving at 65 mph should have
the same properties as a baseball moving at

v =
(3.8)(65 mph)

(2.9)
= (1.31)(65 mph) = 85 mph. (10)

Since the drag coefficient for a baseball moving with
a speed of 85 mph is about 0.35,16 we used this value
of CD in our equations. This number is consistent with
drag coefficients for fastpitch softballs found experimen-
tally by Nathan (CD = 0.31, σ = 0.04).5 Continuing with
our assumption that a fastpitch softball can be treated
as a scaled up baseball, we assume the drag coefficient
for a fastpitch softball is constant during the time it is
in the air and is independent of the orientation of the
ball’s stitches and the magnitude and orientation of its
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spin.17 This assumption is supported for softballs by the
experimental result for CD quoted above.5

Both uniformly rough and ideally smooth balls experi-
ence a “drag crisis” at certain speeds, which is the name
given to a sharp decrease in the value of CD that oc-
curs at the onset of turbulence. No such effect occurs
for baseballs moving at 85 mph, so we assume that fast-
pitch softballs traveling at 65 mph also do not experience
it.18,19 We also assume there is no wind.

The dimensions of the strike zone vary from batter to
batter. In this paper we assume the strike zone starts 1.5
feet (0.46 m) above the ground (at the height of the top
of the batter’s knees) and ends 3.75 feet (1.1 m) above
the ground (at the height of the batter’s forward armpit).
We take the width of the strike zone as the width of home
plate (17 in) plus the diameter of a softball (3.8 in) since
the rules specify that a pitch is a strike if any part of
the ball crosses over the width of home plate.20 Thus,
we take the width of the strike zone to be 20.8 in (0.53
m). The strike zone provides the boundary for pitches in
our analysis; that is, we require all of our pitches to pass
through the strike zone.

The last parameter we need to discuss is the lift co-
efficient CL. For baseballs, Nathan has shown that CL

is independent of speed,6 but the degree to which it is
affected by the orientation of the stitches with respect to
the spin axis of the ball is not completely understood.24

Nonetheless, most treatments of lift coefficients for base-
balls ignore the effect of seam orientation and assume CL

remains constant during its trip from the pitcher’s hand
to the strike zone.21,22,23 We will make the same assump-
tion for fastpitch softballs. We note, however, that recent
experiments indicate there are special cases in which the
orientation of the seams can have a substantial effect on
CL.8,10 Lift coefficients are discussed in more detail in
Section V.

We numerically integrated the equations of motion (6)
- (8) with a C++ program that uses the fourth-order
Runge-Kutta method. Given that our chosen margin of
error is two significant digits, a step size of 0.02 s was
sufficient since smaller step sizes produce identical values
for our quantities of interest.

The program is set up so that we input the fixed pa-
rameters discussed above, choose launch angles θ and ϕ,
and then find the values of the lift coefficient for which
the ball passes through the strike zone. More specifically,
after entering the fixed parameters discussed above, we
choose θ and ϕ for the pitch in which we were interested
and then allow CL to vary from a minimum of 0.00 to a
maximum of 1.0 in order to find the values of CL that
put the ball in the strike zone for those particular values
of θ and ϕ.

TABLE I: Conditions for drop ball pitches

θ (degrees) Range of CL

5.0 0.00 – 0.05

5.5 0.00 – 0.11

6.0 0.00 – 0.16

6.5 0.00 – 0.22

7.0 0.00 – 0.27

7.5 0.00 – 0.33

8.0 0.04 – 0.38

8.5 0.10 – 0.44

9.0 0.16 – 0.50

9.5 0.21 – 0.56

10.0 0.27 – 0.62

III. RESULTS

A. THE DROP BALL

In the case of a drop ball, the Magnus force points in
the negative y direction (α = −90◦). Since the only other
force acting in the y direction is gravity, the softball will
only pass through the strike zone if there is a positive
launch angle θ.

Table I shows the conditions necessary for a drop ball
to pass through the strike zone for a range of launch
angles. For example, if the drop ball leaves the pitcher’s
hand at an angle of θ = 6.0◦ then the lift coefficient must
be between 0.00 and 0.16 in order for the ball to cross
home plate in the strike zone. The reason there is a range
of acceptable values for the lift coefficient is because the
ball will be a strike if it passes anywhere between the top
and bottom of the strike zone. Note that here, and in
what follows, CL = 0.00 indicates a pitch for which the
Magnus force is zero. Technically, a pitch for which the
Magnus force is zero is not a drop ball, curve ball or rise
ball, but we include this value of CL in the tables because
it represents the lower bound of the allowed values of the
lift coefficient.

Figure 1 shows the trajectory of a drop ball with a
launch angle of θ = 6.0◦ and a lift coefficient CL = 0.15.
Note that the scale on the y axis is smaller than the
scale on the x-axis, so the vertical part of the trajec-
tory displayed in the figure is somewhat exaggerated. In
Figure 1, and in all subsequent figures, x = 0 ft is the
x-coordinate of the point at which the pitch is released
from the pitcher’s hand and x = 40 ft is the x-coordinate
of the far side of home plate.

B. THE RISE BALL

In the case of a pure rise ball, the Magnus force points
in the positive y direction (α = 90◦). Table II shows the
range of values of CL for which the ball will pass through
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FIG. 1: The trajectory of a 65 mph (29 m/s) drop ball with an initial angle θ = 6.0◦ and a lift coefficient CL = 0.15.

TABLE II: Conditions for rise ball pitches

θ (degrees) Range of CL

0.0 0.51 – 0.85

1.0 0.40 – 0.73

2.0 0.29 – 0.62

3.0 0.18 – 0.51

4.0 0.06 – 0.40

5.0 0.00 – 0.29

6.0 0.00 – 0.18

7.0 0.00 – 0.07

the strike zone for various values of the launch angle θ.
When θ ≥ 8◦ there is no (positive) value of CL for which
the pitch will be a strike.

For θ = 3.0◦ and CL = 0.20, the pitch stays in the
strike zone but, as Figure 2 shows, the ball does not con-
tinue to rise throughout its complete trajectory. Figure
3 shows a rise ball pitch with θ = 6.0◦ and CL = 0.18
that does rise during its whole trip to home plate.

C. THE CURVE BALL

In the case of a pure curve ball, the Magnus force
points in the negative z direction (α = 180◦) and the
softball curves to the pitcher’s left. (By calling this pitch
a “curve ball” we are implicitly assuming the pitcher is
right-handed. If the pitcher were left-handed this same
pitch would be called a “screw ball.”)

Table III shows the conditions necessary for a curve
ball to pass through the strike zone. In each case we
have assumed a value of θ which keeps the ball within
the strike zone’s vertical dimensions.

Pitches with values of ϕ less than 90◦ begin with a
component of velocity in the positive z direction, oppo-
site to the direction in which the ball will curve, which
means they first travel slightly to the pitcher’s right be-
fore they curve to the left. The trajectory of a curve ball
with launch angles θ = 4.5◦ and ϕ = 90◦, and a lift co-
efficient CL = 0.15, is shown in Figure 4. We stopped

TABLE III: Conditions for curve ball pitches

ϕ (degrees) Range of CL

90.5 0.00 – 0.21

90.0 0.00 – 0.27

89.5 0.06 – 0.32

89.0 0.12 – 0.38

88.5 0.17 – 0.44

88.0 0.23 – 0.49

87.5 0.29 – 0.55

calculating trajectories when ϕ = 87.5◦ because, as we
discuss in Section V, fastpitch softball pitchers rarely at-
tain a value of CL higher than about 0.30.

D. OTHER PITCHES

We can also compute and graph trajectories of pitches
with the Magnus force vector pointing in any direction
α in the y−z plane and any valid launch angles θ and
ϕ, which we can think of as “rising screw balls,” “falling
curve balls,” etc. Indeed, one way our model can be
used is to display the trajectories of these pitches for
various values of CL to estimate how much spin would
be necessary to keep them in the strike zone.

IV. STRIKING OUT THE BATTER

We can use our results in conjunction with the time
analysis of a typical batter’s swing given by Adair4 to
get a better understanding of when a batter is most likely
to swing and miss (or foul) a pitch that passes through
the strike zone. Our approach is to find out where the
ball is when the batter must initiate her swing. If the
ball has not appreciably begun its drop or curve at this
time then the batter is likely to miss (or foul) it as it
passes over home plate. In what follows we give only a
qualitative description of the method because, first, all of
our calculations are based on initial values which are valid
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FIG. 2: The trajectory of a 65 mph (29 m/s) rise ball with an initial angle θ = 3.0◦ and a lift coefficient CL = 0.20. This pitch
does not rise throughout its complete trajectory.
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FIG. 3: The trajectory of a 65 mph (29 m/s) rise ball with an initial angle θ = 6.0◦ and a lift coefficient CL = 0.18. For these
values of θ and CL the ball rises throughout the whole trajectory.

to only two significant figures, second, the times used by
Adair will vary slightly from one batter to another, and
third, the time it takes a batter to recognize when the
ball has left the pitcher’s hand is slightly uncertain for
any particular batter and varies from batter to batter.

The first step in our approach is to determine the total
time the ball is in the air as it travels from the pitcher
to home plate. Our numerical integration of Newton’s
equations shows that, for a softball traveling at 65 mph
and a drag coefficient of 0.35, this time is 0.45 s. If we
assume no drag force, so the softball is traveling at a
constant speed of 65 mph from its release point to home
plate, the time of flight is 0.42 s. Thus, the model shows
that the magnitude of the drag coefficient does not play
a big role in fastpitch softball. We also note that the
corresponding time for a baseball traveling at a constant
speed of 90 mph to reach home plate, which is 56 ft away
from the point where the pitch is released, is also 0.42 s.

Adair’s analysis of what happens during the batter’s
swing separates the batter’s complete response into four
parts: Looking, Thinking, Action, and Batting.4 The
Looking portion of the swing takes about 75 millisec-
onds and is the time it takes the batter to cognize that
the ball has left the pitcher’s hand. The next part of
the batter’s process is the Thinking portion. During this
part of the swing, which takes about 50 milliseconds, the
brain estimates the ball’s trajectory. The next part of the
batter’s process is the Action portion, which takes about

25 milliseconds. This is the time period during which the
brain tells the muscles to begin the swing. Finally, there
is the Batting portion of the process, approximately 150
milliseconds, from when the batter sets the bat in mo-
tion until the bat hits the ball in the middle of home
plate. Adair says an experienced player can make minor
adjustments in the motion of her bat for about the first
50−100 milliseconds of the Batting portion of the swing,
but these adjustments most likely won’t result in a solid
hit if the trajectory is not what the batter expected at
the end of the Action portion of her swing.

In Figure 5 we show where a rise ball and a drop ball
are during each of the four parts of the batter’s process.
To do this we first determined the time at which the ball
would be directly over home plate and called this the
end of the Batting portion of the swing. We then worked
backwards from this time to determine where the ball
is 150 milliseconds earlier, at the beginning of the the
Batting portion, and continued in this way to determine
where the ball is at the beginning of the Action, Thinking
and Looking phases.

Figure 5 shows how hard it is for a batter to assess
the trajectory of a pitch in time to get a solid hit. As
the figure shows, the batter must commit to her swing
at the end of the Action portion of her process, when
the drop and rise ball trajectories are almost indistin-
guishable. But, when the balls cross home plate, the two
trajectories are over one foot apart(!) so if the batter has
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FIG. 4: The trajectory of a 65 mph (29 m/s) curve ball with θ = 4.5◦, ϕ = 90◦ and a lift coefficient CL = 0.15. (a) A view
of the trajectory from above. (b) The batter’s view of the trajectory. Note that in both cases the scale on the x axis is larger
than the scales on the y and z axes.
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FIG. 5: The trajectory of a 65 mph (29 m/s) rise ball with an launch angle θ = 4.0◦ and a lift coefficient CL = 0.30 together
with the trajectory of a drop ball with an launch angle of θ = 7.0◦ and a lift coefficient CL = 0.25. The first dotted line, at
x = 15.2 ft (4.6 m), shows the location of the ball at the last possible time by which the batter can start the Looking phase.
The dotted lines at x = 22.0 ft (6.7 m), x = 26.5 ft (8.1 m) and x = 28.7 ft (8.7 m) show the respective last locations of the
ball by which the batter can start the Thinking, Action and Batting phases. Given the scale on the y-axis, the locations of the
two pitches are almost indistinguishable to the batter during the time just before she initiates her swing, but when the pitches
cross home plate they are over a foot apart.
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made the wrong choice at the beginning of her swing she
most likely miss or foul the ball.

Figures like Figure 5 can be created to compare the
trajectories of any two pitches and thus can be used to
get an idea of how likely it is that the batter will have
difficulty distinguishing one pitch from another at the
time she has to commit to a specific swing.

V. LIFT COEFFICIENTS FOR A FASTPITCH

SOFTBALL

Although the equations in which the drag and lift coef-
ficients appear have the same form, the coefficients them-
selves have different functional dependencies. For exam-
ple, whereas the drag coefficient depends upon proper-
ties intrinsic to the ball and the air through which it
travels, heuristic arguments4,6 suggest that the lift coef-
ficient should depend upon the spin ω of the ball and its
linear speed v through the air, both of which will vary
from pitch to pitch. Consequently, although the drag co-
efficient should be essentially the same for all pitches, we
expect the lift coefficient to lie within a bounded range
determined by the maximum and minimum values of the
spin and initial speed which can be given to the ball by
each pitcher.

Nathan6 investigated lift coefficients for baseballs, first
extracting values of CL from data and then examining
their functional dependence on the Reynolds number and
a quantity called the “spin factor,” which is defined as
S = ωR/v. He found that for 75 mph < v < 100 mph
and 0.15 < S < 0.25, which are the ranges most relevant
to baseball, CL is independent of the Reynolds number
(or speed) but does depend upon S. Nathan says his data
is in “excellent agreement” with the parameterization of
Sawicki et.al.

21

CL = 0.09 + 0.6S (11)

when S > 0.1, and

CL = 1.5S (12)

when S ≤ 0.1.
In order to investigate how CL and S are related for

fastpitch softballs we need to know typical values for a
softball’s angular speed ω. RevFire c© makes equipment
which they claim measures ω for fastpitch softballs to
within ± 0.25 revolutions per second.25,26,27 Their mea-
surements show that the average value of ω for a drop
ball is 20 revolutions per second (rps), for curve balls
and screw balls is 21 rps, and for rise balls is 22 rps.
More generally, they found that for most pitches 17 rps
< ω < 32 rps. Using these values of ω we find that the av-
erage value of S is about 0.22 for all four types of softball
pitches when they are moving with a speed of 65 mph,
and that S is usually within the range 0.18 < S < 0.34.
Note that this range of values has significant overlap with
the corresponding range (mentioned above Eq. (11)) for
baseballs.

In Section II we calculated a theoretical value of the
drag coefficient based on the assumption that a fastpitch
softball can be treated as a scaled-up baseball and we
found that the calculated value was in excellent agree-
ment with experimental data. Because of this, and be-
cause the range in which the spin factor S falls for a
fastpitch softball has significant overlap with the range
of S for a baseball, we assume that the allowed values
of CL for a fastpitch softball can also be computed from
Eqs. (11) and (12). Making this assumption, we predict
that the average value of CL for drop balls, rise balls,
screw balls and curve balls moving at 65 mph should
be around 0.22, and that CL should fall within the range
0.20 < CL < 0.29. We note that a preliminary analysis of
data taken from over 3500 pitches of all kinds thrown by
four pitchers found a similar upper bound for CL (about
0.30) although a somewhat lower mean (0.13, σ = 0.06).5

The fact that we expect CL to be bounded above by
0.30, and that this expectation is in agreement with ex-
perimental data, allows us to use the results presented
in Tables I, II and III to draw several interesting conclu-
sions about launch angles. First, according to Table I,
drop balls which pass through the strike zone can’t have
launch angles greater than about ten degrees. This pre-
diction is consistent with the data presented by Nathan,6

which showed that θ has an average value of 7.4◦ with
a root mean square value of 2.3◦. Note that Nathan’s
launch angle data were taken for all types of pitches,
not just drop balls. Second, according to Table II, rise
balls must have a nonzero launch angle in order to pass
through the strike zone and this angle must be greater
than two degrees. This prediction is consistent with the
data presented by Nathan,6 which showed that there were
no launch angles θ less than two degrees. Third, accord-
ing to Table III, a pitch curving to the pitcher’s left must
be launched with a horizontal angle less than 2.5◦ to the
right of the line between the pitcher and home plate if
it is to have a chance of passing through the strike zone.
At present there are no data with which to compare this
prediction.

VI. CONCLUSION

In this paper we presented a model based on New-
ton’s Laws from which the trajectories of various pitches
in fastpitch softball can be calculated and displayed. We
used this model to graph the paths followed by drop balls,
rise balls and curve balls for different choices of launch
angles and lift coefficients, and to determine which com-
binations of these parameters result in pitches that pass
through the strike zone. We then used the model, along
with an analysis presented by Adair, to predict when a
pitch is likely to be missed or fouled by a batter. Fi-
nally, we considered lift coefficients CL for fastpitch soft-
balls. We predicted that CL should be bounded above
by 0.30, a result confirmed by recent experimental data,
and then used this bound together with other results from
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our model to place limits on the launch angles for which
various pitches will stay within the strike zone.

Besides offering a new way to graph and compare the
trajectories of fastpitch softball pitches, to determine
their lift coefficients and launch angles, and to explore
various ‘what if scenerios . . . ’, the model presented here
also cano be used in undergraduate courses in classical
mechanics and mathematical modeling. Once they have
implemented the code, students (or softball enthusiasts)
can use the model to gain better physical insight into how
changing different parameters, such as the drag and lift
coefficients or the initial speed of the pitch, affects the
trajectory of the ball. They can also compare the trajec-
tories of various pitches as we did in Figure 5 to see where
the pitches are at different times in the batter’s process
and whether the pitches can be distinguished from each
other before the batter has committed to her swing. We

end by noting that the model presented here can be used
to investigate pitches in baseball if the parameters and
initial values are replaced by numbers appropriate to that
sport.
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