
 1 

FORENSIC ACCIDENT INVESTIGATION: Motor Vehicles 
THOMAS L. BOHAN and ARTHUR C. DAMASK, Editors 

JOSEPH A. KEIERLEBER, Assistant Editor 

 

Material to included in the 2004 Cumulative Supplement for Volume I.  The insertion 

point references are either to the original volume or to Supplement 2003. 

Chapter 1 

An Introduction to the Physics of Motor Vehicle Accidents 

A WordPerfect FILE IS BEING SUBMITTED SEPARATELY. 

 

Chapter 2 

Determination of Speed from Pedestrian Throw 

 

A WordPerfect FILE IS BEING SUBMITTED SEPARATELY. 

 

Chapter 4 

Determination of Speed from Yaw Marks 

[At the bottom of the material added by the 2003 Cumulative Supplement (ending on 

Supp page 34) to the Editor’s Introduction on p. 152, add the following additional text.] 

 

Although more appropriately placed in a chapter dealing with basic principals, an 

extensive discussion of error analysis is included in Chapter 4. This discussion includes 

the introduction of the Monte Carlo method of analysis, which has recently been 

appearing in accident reconstruction reports and articles. Given the adversarial context 

in which the subjects presented in this book will be used, it is important to be clear about 

what is meant by the terms “error analysis,” “range of uncertainty,” “error bars,” and 

the like. As Taylor [Ta:97] makes clear, the use of the word “error” in reviewing one’s 

measurements does not mean “mistake.” Also, when one talks of the range of uncertainty 

in one’s calculated answer, one is not implying that there is some vagueness of thought.  

 

In science, the word error does not carry the usual connotations of the 

terms mistake or blunder. Error in a scientific measurement means the 

inevitable uncertainty that attends all measurements. As such errors are 

not mistakes; you cannot eliminate them by being careful. The best you 

can hope to do is to ensure that errors are as small as reasonably possible 

and to have a reliable estimate of how large they are. [Boldface 

emphasis added.] [Ta:97, at 3] 

 

One often speaks of random errors without being clear about what non-random errors 

are. In the context of making a series of measurements of some variable, a random error 

is an unavoidable deviation from the “true” result, one that goes in one direction as often 

as in the other. The statement that results of a series of measurements are valid within 

3% is correct only if the only measurement were random. Members of the public hear or 

read this type of statement most frequently in the context of opinion polling. For example, 

tagging along after a report of the President’s “approval rating” will be a caveat of the 



 2 

form “these results are valid to within plus or minus 3.2%.” The correct version of this 

statement would be something like “If we did everything right, the results are still only 

valid to within plus or minus 3.2%.” In that particular context, the uncertainty (error) is 

inherent in the enterprise of inferring the opinion of a large population from surveying a 

small subset of that population.  

 For those who visualize shooting dice better than measuring speed at the start of 

a skidmark, the following digression may be useful in illustrating the application of the 

Monte Carlo method as well as demonstrating the breadth of its applicability. Although a 

number of analogies exist between the rolling of dice and the measurements one makes of 

variables needed for a calculation, those associations will be left for the reader to make.   

First, consider a question that you know the answer to, or can quickly remind yourself of, 

namely the distribution of values one obtains by rolling two dice a large number of times. 

The values of each one of the two dice can be thought of as the values obtained by 

measuring a variable needed in an accident reconstruction calculation. In the example 

discussed in subsection 4-3(c)(2)(i) of the original text, there were two very different 

variables: skid length and speed. In rolling dice, on the other hand, the two variables are 

identical. The assumption that any variations (errors) in the measurement of a skid length 

are random and not systematic shows up in the dice discussion as the assumption that the 

dice are not loaded, and that only random elements in a throw determine which side of a 

die faces upward when it rolls to a stop.  Each die is a regular cube, and each of its six 

sides bears a different number of pips, ranging from one to six. If the die is rolled many 

times, the distribution of results will be a rectangular curve, bounded by vertical lines 

corresponding to a minimum of one and a maximum of six, and centered halfway between 

three and four. The normalized height of the rectangle along a vertical axis representing 

probability is one sixth. (It can be seen immediately that the total area under this curve is 

unity, thus satisfying the requirement placed on all probability curves extending over the 

entire range of possible values of the variable, that the total probability of obtaining 

some value in the range of values is one.)  

When the two dice are tossed at the same time, the possible total ranges from two 

(“snake eyes”) to twelve (“boxcars”). The false reasoning displayed in some cross-

examinations would proceed on the assumption that these and any totals in between are 

equally likely. It does not take a craps shooter to realize that this is not the case. Whereas 

there is only one combination that will result in either extreme, there are more, for some 

totals many more, ways of obtaining intermediate totals.  Figure 4-1SE displays in matrix 
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form all of the possible totals. Across the top are the six values that have equal 

 
Figure 4-1S Two-Dice Combinations  

 

 

probability of turning up on one die; deployed vertically along the right side are the six 

values equally probable to show on the other die. Figure 4-2SE  is a partially 

normalized
b
 histogram of the totals which result when the dice are rolled a huge number 

of times. Note that a column located at a particular number along the x-axis is equal in 

height to the number of times that that number appears in the matrix of Figure 4-1SE. 

Figure 4-3SE is the same except that the vertical axis has been “normalized” so that the 

total area under the curve is equal to one. This figure provides the probabilities of each 

number being rolled on a single toss, ranging from 1/36 for either snake eyes or boxcars. 

The most likely roll is seven, the probability for which on a single roll is 1/6.  

Since each of the two “variables” in this calculation can only take on six discrete 

values, the histogram depicting the totals will never become a smooth curve, regardless 

of how many tests are run. All that happens, as the number of tests becomes very large, is 

that the histogram approaches the shapes shown in Figure 4-2SE and Figure 4-3SE. 

Figures like these will appear in the Monte Carlo calculation, where a bell-shaped 

distribution usually replaces the uniform
c
 distribution found in the case of the dice.  The 

following steps set out how a Monte Carlo method is applied in the case of the dice: 

1. Using a random number generator, generate a value for die 1 between one and six, 

X1. 

2. Using the random number generator, generate a value for die 2 between one and 

six, X2. 

3. Add X1 and X2, placing the sum on a histogram array. 

4. Repeat steps (1), (2) and (3) N times. 

 

                                                 
b 

Think of it as the result of 36,000 rolls of the dice, but where each total has been divided by a 

thousand;  or of 36,000,000 rolls where each total has been divided by a million.  

c
  By “uniform,” it is meant  that the probability is the same for throwing any value on the die.  
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This is in effect the procedure followed by the Monte Carlo method once one has 

provided the shape of the uncertainty distributions of the underlying variables (i.e., of 

each die (as described in footnote (c)). 
 

 
Figure 4-2SE  Relative Frequency 

 

 
Figure 4-3SE Normalized Frequency (Probability) 
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[Replace the present subsection §4-3(c)(5) with the following material, renumbering the 

existing subsection §4-3(c)(5)  as §4-3(c)(6).] 

 

§ 4-3(c)(5). Further Discussion of Uncertainty; Introduction to the Monte 

Carlo method. 

Section 4-3(a) emphasized the importance of including a margin of error when 

presenting any number. However, it was not very explicit about what “margin of error” 

meant. In fact, the phrases “margin of error,” “degree of uncertainty,”
d
 and variants on 

them get tossed around a good deal by scientists, engineers, and lawyers in speaking with 

one another under circumstances where it is likely that they each have a different 

meaning – including no meaning – in mind. In the context of scientific measurement, 

“error” does not refer to a defect in the measurement or a mistake in technique, but to the 

inescapable uncertainty that results even when the measurement is done perfectly. 

“Error” and “uncertainty,” which have the same meaning in this context, arise in 

discussions aimed at defining the precision with which we know a particular quantity, 

whether it was measured directly, or calculated from two or more quantities that had been 

directly measured.  

This section will discuss a particularly powerful approach for accomplishing an 

uncertainty analysis, an approach that has only within the last decade or so appeared in 

the field of motor vehicle accident investigation. It is hoped that this discussion will 

provide the reader
e
 with sufficient understanding to be able to ask—and respond to—

intelligent questions regarding margin of error in general, and to be able to efficiently 

dispatch non-intelligent questions and answers on the subject.  

To illustrate one particular Monte Carlo method, the “rejection Monte Carlo 

method,” a somewhat artificial accident-reconstruction-related problem will be used: the 

skid-to-a-stop determination of  , the coefficient of friction (COF), between sliding tires 

and pavement. Here, after two variables are physically measured,   is calculated from an 

expression containing those variables. The variables to be measured are the length of the 

skidmark (x) and the speed of the test car at the start of the skidmark (v).  In general, 

there will be a range of uncertainty in the results of both measurements. As discussed 

earlier in this section, the margin of error that is of ultimate interest is that in the 

calculated quantity. This is sometimes referred to as the “composite error,” and is 

determined by the individual margins of error of the underlying measurements.  

In the skid-to-a-stop method of finding the COF between tires and a particular 

road surface (a method which has been used relatively infrequently in recent years), a test 

car’s brakes are slammed on while the car is traveling over the surface of interest at a 

measured speed. To spare the tires of the test vehicle, that speed was typically no higher 

                                                 
d
  Labeling from the opposite perspective is plagued by an equal number of terms, such as “degree of 

certainty,” “confidence level,” etc., most of which are also mutually interchangeable. 

  
e
  As always, the reader is presumed to be a member of the legal profession, or a technically trained 

and experienced individual engaged in forensic work.  It is also presumed that the technical ability within 

both subsets has a considerable range, even though the bottom of that range will be higher with the forensic 

workers than with the attorneys.  The material has been developed with the intention that, even if some 

parts are difficult going for some of the readers and other parts overly simplified for other readers, all 

readers will find parts of the material useful.  
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than about 30 mph. However, for our example, we will select 60v mph as the 

measured speed at the instant the first skidmark begins.
f
 That is, the brakes are slammed 

on and the test car skids to a stop. We specify further that the skid occurs on a horizontal 

surface, that the front tires lock up first and that the length of the longer of the two front-

tire skidmarks is measured to be 180x  ft.  Using Eq. (4-11) we find 
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Actually, we have already made a statement about the precision with which   is known, 

since 0.67, with its two significant figures is obtained from rounding off the longer 

number that results in carrying out the above calculation: 0.66804…  This rounding off, 

in deference to the speed being known to no better than two significant figures, should be 

second nature.
g
   But this is just the beginning of error analysis. After the uncertainty in 

the underlying measurements is determined, it may be that even this degree of precision 

will be found to be absent.  

We now can calculate the coefficient of friction  and its associated margin of 

error  using the Monte Carlo method which, though used successfully in nuclear 

physics since 1944
h
, has only recently been applied to calculations in accident 

reconstruction. (For two of the earliest papers applying Monte Carlo to accident 

reconstruction calculations, see  Ko:94 and Wo:94.) 

The Monte Carlo method has three main advantages over the two methods 

discussed in Section 4-3(a):   

                                                 
f
  Note that this (somewhat artificial) approach avoids the huge source of error discussed in Section 

4-3c(2)(i), an error resulting from the fact that a car can travel a significant distance between the instant the 

brakes are applied and the instant the tires start laying down skidmarks.  In such circumstances, a 

ridiculously high value is calculated for the COF, regardless of how precise the speed at braking and the 

length of the skid are measured. An error of this nature is called a “systematic error,” since it systematically 

(always) errors on one side of the true value. 

  
g
  Most reconstructionists seem to know this rule when it comes to the COF. The situation is vastly 

different when it comes to calculated speeds, which are often seen stated to four, five, or six significant 

figures.  Probably the difference arises because of the way the COF is listed in the literature: always with 

two-significant-figure precision, and never with three or more.  

 
h
  The idea of modeling complex phenomenon by making various trials and studying the outcomes 

occurred to Stanislaw Ulam while he was playing solitaire during an illness in 1946 ([As:89 on 312). The 

immediate problem he was trying to solve was that of predicting the results of neutron diffusion in fission 

experiments at Los Alamos. The name of the procedure first appeared in the paper by Metropolis and Ulam 

in 1949 [Me:49]. The first simple algorithm to set up a Monte Carlo method was the Metropolis algorithm 

introduced by Metropolis, Rosenbluth,  Rosenbluth, Teller, and Teller in 1953 [Me:53].  
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first, it provides a way to express margins of error in language that is easy 

to understand and difficult for an adversary to distort;  

 

second, it provides an easy way to calculate the composite margin of error 

in a calculated quantity even when the mathematical expression from 

which it is obtained is relatively complex, such as is the case for csv  (Eq. 

(4.4)); and 

  

third, it provides a way to include information in the calculation of the 

margin of error that otherwise could not have been used.  

 

In sum, not only does the Monte Carlo method provide an accurate expression for the 

composite margin of error, it also provides one that can be understood intuitively.  

Before getting into the Monte Carlo method per se it is useful to discuss a few 

margin-of-error basics. It is general knowledge that in the absence of outright mistakes, 

the more times one measures a quantity of interest the more precisely that quantity can be 

expressed.  Thus, in the example above, suppose that we measure the skid distance many 

times.  Earlier, it was simply stated to be 180 feet, which may be the result of a single 

measurement.  Making many careful measurements, however, will not result in a single 

number for the length, but rather in a distribution of values centered on a particular value. 

This distribution arises for a variety of reasons, even in the absence of carelessness or 

faulty technique. For example, the people making the measurement may be inconstant in 

the degree to which the measuring tape is held taut. Also, given the faintness with which 

most skidmarks are characterized at their starting point, the end of the measuring tape 

may not be laid down at exactly the same point each time. The idea of random error is 

that it subtracts from the “true” value as often as it adds to it and so in that sense averages 

out.  

Imagine that the skidmark length measurement has been carried out twenty times 

with the results as plotted in the histogram of Figure 4-4S, which shows the number of 

times each value was obtained during those twenty measurements. In other words, the 

histogram is a plot of the measured length (along the horizontal axis) versus the number 

of times that value was obtained (vertical axis). It can be shown that if the measurements 

are indeed subject only to random errors, the histogram will eventually look something 

like Figure 4-5S after many (e.g., 1000) measurements have been made.  (See, for 

example, Br:94,  Ba:02, or Chapter 5 of Ta:97.)  

We next “normalize” the histogram of Figure 4-5S by dividing the units on the 

vertical axis by the total number of measurements made of x, obtaining Figure 4-6S. 

Once this is done, each vertical column has a height equal to the fraction of the total 

measurements that resulted in value or range for x at the base of that column.  For 

example, if 300 of 1000 measurements resulted in a value of x  between 176 and 178 ft, 

then the height of the column above the interval from 176 to 178 in Figure 4-6S, the 

normalized histogram, would be 0.30 (= 300/1000), as opposed to 300 on the non-

normalized Figure 4-5S.  Of course the two graphs have exactly the same shape, since 

only the scale on the vertical axis has been changed. 
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As the number of measurements increases, a smooth curve of the shape referred to 

as a “bell curve” begins to emerge from the irregular “staircase” of the initial histogram, 

as shown in Figure 4-6S. Another name for the bell curve is “Gaussian distribution.” A 

histogram representing multiple measurements of any quantity often will approach the 

shape of a Gaussian distribution as the number of measurements becomes large, as long 

as the measurement process producing the numbers is subject only to random errors.
i
  

Thanks to the work by Gauss, which led to his name being applied to this distribution, the 

properties of the Gaussian distribution
j
 are known in great quantitative detail. Among 

other things, the probability that the true value for the measured entity lies within a 

particular range can be quantified.  For example, once we have enough measurements of 

x, we can state the probability that, instead of being 180 feet, the true value of x is 170 

feet, or 191 feet, etc.  

There are many approaches to defining the uncertainty in a measurement. One 

often sees the COF written in the form   = 0.8  0.1, which looks impressive (in terms 

of recognizing uncertainty) but is undefined without a statement as to what the error 

limits represent. As discussed in Chapter 2 in the Supplement, the choice one makes in 

defining the error limits depends on the context. Although making this assumption in 

non-scientific fields is risky, it is often assumed that, in the absence of an explicit 

definition of the error limits, those limits represent the standard deviation of the Gaussian 

distribution of results. (Clearly, this also involves an assumption that the results follow a 

Gaussian distribution.) Unfortunately, in the courtroom, it is often assumed that error 

limits define some kind of “uniform” range within which the quantity in question has an 

equal probability of lying. This is essentially always wrong.
k
 

Most textbooks on probability (see, in particular, Chapter 5 of the very readable 

book by J.R. Taylor [Ta:97])  show that the center of the Gaussian distribution is the 

average value of the results from a great many measurements of the particular variable.
l
 If 

most of the measured values lie close to the average value, the distribution then is said to 

be “well-peaked,” as shown in Figure 4-7S. It is the distribution’s standard deviation (just 

mentioned) that characterizes the tightness of the data around the average, or 

                                                 
i
  Repeating the example cited in the Editor’s Introduction (Supplement), it is noted that this 

assumption of no non-random errors underlies statements such as “the margin of error in this survey was 

3.2%,” usually made nowadays after describing the results of an opinion poll. A less misleading statement 

would be something like “Assuming everything was done correctly in carrying out the survey, these results 

have a  margin of error of 3.2%.”  Or, alternatively, “The absolute minimum margin of error for this survey 

is 3.2%; it may be much larger.” 

 
j
  A Gaussian distribution is also referred to as a Gaussian curve or, for short, simply, a Gaussian. 

 
k
  One example of where this “square” range is correct is in the roll of a single die. If the die is not 

“loaded,” it has an equal probability of having any one of its six sides facing up at the end of the roll. 

  
l
  Any quantity substituted into an expression to be evaluated is referred to as a variable, and 

generally as an independent variable. This does not suggest that there is any variability to the quantity in a 

given context. For example, the skidmark length is what it is. However, the next time, it will be different 

even though the same expression will be used to calculate the COF. In this context the COF is the 

dependent variable, because it depends, through Eq. 4-11 on the two independent variables: x (the skidmark 

length) and v (the starting speed). 
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alternatively, the spread of the measured data about the average value. The standard 

deviation will have the same units as the variable being measured, and is traditionally 

represented by the lower case Greek letter sigma:  .  Figure 4-8S shows one 

particular . Stated differently, a small   means there is a very small probability that the 

actual value for the measured quantity differs significantly from the average, which is 

what is really meant when one says that there is only a small margin of error associated 

with the measurement. Equivalently, one can say that a small   means that the 

uncertainty of the variable is small.
m

 Conversely, a large   means there is a large margin 

of error, that a single measurement of the variable has a significant chance of deviating 

significantly from the true value, and that, after many measurements, there remains a 

significant chance that the true value deviates significantly from the average. The 

Gaussian associated with a particular variable is in fact the probability that that variable’s 

true value lies at any particular interval along the x-axis. This means that we can do away 

with vague descriptions about the probability of a particular error. For example, for a 

variable x having a Gaussian probability distribution characterized by an average value 

xav and a standard deviation  , the probability is 68% that a random measurement of x 

will yield a value falling within the range avx .
n
  Similarly, there is a 95.4% 

probability that any measured value of x  lies in the range avx 2 , a 99.7% probability 

that any measured value of x lies in the range avx 3 , etc.  Indeed, as illustrated in 

Table 4-1S, it is easy to find the probability that any measured value of x  will be in the 

range txav  , for any value of t. 

We can now describe the Rejection Monte Carlo method in the context of the 

calculation of the margin of error for COF as determined by the skid-to-a-stop method. In 

this case, there are two measured quantities, x  and v, from which we will calculate the 

coefficient of friction  and its associated margin of error  . The steps below are 

illustrated in Figures 4-8S and 4-9S for one variable, the distance x: 

 

1) Assume the measured quantities x  and v follow normalized 

Gaussian distributions centered at avx  and v av , with standard 

deviations  x  and  v . One may choose to characterize each 

margin of error as being , so that one would state the result of the 

measurement of, say, the skid distance, as 
o
x = avx   v .  

Alternatively, rather than use each  to define each margin of 

error, one may look to the full range of values obtained for each 

quantity so, for example, ( maxx , minx ) would determine the 

                                                 
m
  Going just a bit further, one can say that if multiple measurements of a particular quantity always 

show a very small range of values (a small scatter) then it is likely that each measurement of this quantity 

has a high degree of precision.  

 
n
  It is noted that avx  0.67 x  defines the 50% range. That is, there is a 0.50 probability that the 

true value of x lies in this interval. It follows that the probability that the true value lies outside that interval 

is also 0.50.  
o
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beginning and end of the distribution.  If the data is symmetric in 

the sense that maxx is the same distance above avx  as minx  is below 

it, then one again has a simple expression for x =  avx   , where  

is the distance from avx  to each of the extremes. (Cases in which 

measured data do not follow Gaussian distributions are discussed 

below.)  

 

2) Use a random number generator
p
 to obtain a value of x within 

some defined range, such as minx   x  maxx , or ( 3avx )  x    

( 3avx ), etc. 

 

3) Generate a second random number whose value lies between zero and 

one. This corresponds to picking a particular value on the vertical axis of 

the normalized distribution of measurements of x. 

 

4) Determine whether the random number generated in step (3) is 

greater than or less than the value of the normalized Gaussian 

at the random value for x generated in step (2). 

 

5) Repeat steps (2) through (4) with the second measured quantity v; i.e. 

repeat steps (2) through (4) substituting v for . 

 

6) (a) If step (4) results in a “greater than” finding for either variable 

then discard both values and start again at step (2). 

(b) If step (4) results in a “less than” finding for both variables, use 

the values of x  and v thus obtained to calculate  , and record that value 

on a  -histogram.  

7) Repeat steps (2) through (6) many times. This will produce N values 

for  . (Note that N will be less than the total number of runs because 

of the “rejection” condition of step (6)).  

 

8) Normalize the complete  -histogram by dividing the height of each 

column by N. 

  

After enough loops through the calculation, the  -histogram will approach a 

Gaussian distribution, yielding an average value for   and a standard deviation 

 .  This information can then be used to state the desired result:   =  < >   

 . 

 

                                                 
p
  Monte Carlo software packages are available for both stand-alone use or for use in conjunction 

with widely used spreadsheet applications. These packages can handle the random-number generation as 

well as the other calculations needed in the application of the Monte Carlo method. 
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The expression obtained for   and its margin of error in the final step above is the result 

sought.  The margin of error thus obtained is essentially the same as that calculated by the 

most accurate method of error analysis, the method of quadratures  [Br:94 and Chapter 3 

of Ta:97]. However, the Monte Carlo method run on a modern microcomputer is faster 

and less tedious. This convenience in especially pronounced in those instances where 

three or more measured variables are required for the calculation.  

Even in this simple example, it’s easy to see how valuable the results of the 

Monte Carlo method can be in testimony and depositions.  For instance, suppose an 

attorney says “So, Doctor Professor X, the value of the coefficient of friction could be as 

low as 0.6 [naming the very bottom of the uncertainty range].”  If the expression for the 

COF has been obtained with the Monte Carlo method,
q
 the witness can respond with 

something like “Yes it could have been that low; however, in 200,000 computer 

simulations this value occurred only1000 times, or less than 1% of the time.”  Testifying 

in this way eliminates the distortions that can occur when a an adverse witness or 

attorney picks up on a world such as “uncertainty” in order to suggest to a judge or jury 

that the whole calculation is “uncertain.” 

A second (and perhaps unexpected) advantage of the Monte Carlo method is that 

it allows considerations or knowledge to be incorporated that otherwise would not play a 

role in the calculations.  [Wo:94, Mo:03 on p. 44]  For example, suppose an automobile 

started from rest a short distance before it was involved in a collision.  Knowing this puts 

a limit on the speed it could have had at the place of impact.  This limit is easily 

incorporated into the Monte Carlo method by using it as an additional 

acceptance/rejection criterion in step (6).  Thus, we could not only require the random 

value used in the rejection/acceptance step to be less than the Gaussian representing the 

distribution of speed, we also could require that value to be less than the maximum speed 

the car could have obtained by virtue of starting from rest.  Criteria from other 

considerations, such as (possibly) witness testimony, internal consistency checks, crush 

damage, momentum or energy considerations, etc., can be incorporated in the same way, 

as additional requirements a measured variable has to satisfy in order to be used in a 

Monte Carlo run.  In this way, restrictions which otherwise would not have played a role 

in the calculation of can lead to a more accurate answer with a smaller margin of error 

than would have resulted from using only the measured quantities, and with a traceable 

means of showing what restrictions were imposed. Obviously, series of runs with and 

without any one of the restrictions can be displayed. 

The next advantage of the Monte Carlo method has to do with the way in which it 

handles the probability distribution for each measured value.  In the example above we 

assumed the values of both the speed and the COF followed a Gaussian distribution.  

However, we have the freedom to choose any distribution we want, as well as a different 

distribution for each variable.  For example, in cases where a distribution is unknown, 

some investigators use the “uniform distribution,” in which all values within a certain 

                                                 
q
  Even if it is a direct measurement, by a means known to produce a Gaussian distribution, the 

witness can intelligibly characterize the probability that the true value is at the bottom of the stated error 

range. 



 12 

range are assumed to be equally probable.
r
 [Ba:03, Wo:94, Mo:03] Kost and Werner 

[Ko:94] have investigated the effects of using three different types of distributions: the 

Gaussian distribution, the uniform distribution, and the triangle distribution (which has a 

maximum at the average value, and falls linearly to zero at the two limits to the stated 

uncertainty range.).  Other considerations involved in choosing a distribution are 

discussed by Moser et. al. [Mo:03]  

Important information about the actual distribution of quantities frequently 

measured in accident reconstructions has been obtained by Goude et. al. [Mo:03 on p. 

47], and especially Bartlett et. al. [Ba:02]  They all found that measurements of a COF 

(by other than by using a drag-sled
s
) do follow a Gaussian distribution, as do 

measurements of the length of skidmarks and the radius of curved tire marks.  On the 

other hand, their data calls into question the use of a Gaussian distribution for estimates 

of crush damage, and for measurements of friction coefficients with drag sleds  

The actual running of a Monte Carlo analysis can be done using a commercial 

program, such as Crystal Ball [Ko:94], or can be carried out with a computer program 

written by the individual investigator, as was described in [Ba:03] and [Mo:03].  The 

individual following the latter course must take care of a number of factors, such as the 

choice of a random-number generator, the number of Monte Carlo runs needed for 

convergence to a Gaussian, the units to be used on the horizontal axes, etc.   

A number of interesting examples of the Monte Carlo method have been 

presented in the literature.  Bartlett [Ba:03] used it to analyze the stopping distance of a 

motorcycle with rear-wheel-only braking, and a problem involving the distance required 

to stop when perception/reaction time is taken into account.  Moser et. al. [Mo:03] 

analyzed a ninety-degree collision; Wood and Riordain [Wo:94] analyzed two relatively 

complex collisions, a rear end collision and another collision in which the location of the 

point of collision was unknown.  Kost and Werner [Ko:94] used the method in another 

complex example, in which a car wandered off the road onto the right shoulder, then 

crossed the road to the left side as a result of an over-correction of the driver, after which 

it left the roadway surface and traveled on a grassy shoulder.  The Monte Carlo method 

allowed them to use different probability distributions in different parts of the analysis. 

In summary, the main advantages of using the Monte Carlo method for calculating 

margins of error are: 

 

1) The results are easier to present and explain in a courtroom or deposition, and are less 

subject to distortion. 

                                                 
r
  This is also the assumption made by the attorney probing how they may use the uncertainty range 

to get the final result as favorable to his client as possible. However, it is one thing to do this with a single 

measured quantity and quite another to do it with a composite uncertainty range. 

 
s
  It was found that unless all the measurements of a particular COF were performed with the same 

technique and a high quality spring scale they did not form a Gaussian distribution. This should come as no 

surprise to those who have tried to use a drag sled for this measurement. In addition to all the other 

problems inherent in this approach, the low speed of the measurement results in the reading on the scale 

jumping all around.  One cannot help but be dubious of those drag-sled-based COF-measurement reports 

wherein each pull of the drag sled is said to require a well-defined horizontal force precise to two 

significant figures.  The reason that not more is made of this questionable practice is probably the fact that 

the end values of COF are reasonable and the final results (e.g., calculated speed) are only weakly affected 

by errors in the COF. 
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2) The method can be successfully applied to cases in which the equations used are 

relatively complex, or in which several different equations must be used to get the 

final result. 

3) The method can successfully incorporate other considerations, such as witness 

testimony, limits on variables from other conditions, etc., to get a better estimate of 

the final result and reduce its associated margin of error. 

4) The method allows different probability distributions to be used for different 

variables. 
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