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In 1969 Aharonov, Pend leton and Petersen introduced a new dynamical variable, 
the modular momentum, and discussed how several nonlDcal interactions could be 
characterized as resulting from its exchange. In this paper we review and extend 
their approach by applying it to the Aharonov~Bohm effect with an electromagnetic 
scalar potential. First we review the nonclassical nature of the effect, showing that 
the interaction involved does not change the linear momentum of any particle 
creating the interference pattern. We then use the modular momentum to describe 
the interaction in the Heisenberg picture. Studying the equation of motion for the 
motiular momentum, we prove the assertion of Aharonov et al. that modular 
momentum provides a dynamical description of the Aharonov-Boitm effect. 

I. INTRODUCfION 

In 1959 Aharonov and Bohm! proposed two experiments that called 
into question our understanding of what constitutes an interaction. In 
both cases an interference pattern was predicted to shift even though the 
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particles creating it were never acted upon by any force. Since then 
equivalent effects have been predicted to occur in gauge fields,2 Yang­
Mills fields,2.3 gravitational fields,2.4 and inertial fields.5- 7 Nonetheless, 
our understanding of how these effects occur has remained incomplete. 
Explanations have been offered in terms of local effects of potentials,8 
nonlocal effects of field strengths,9-11 and field field interactions.12 .13 

The effects even have been attributed to the time-dependent processes 
involved in setting up the experimental conditions.14.1s Although each 
of these explanations illuminates certain aspects of the effect, a complete 
picture has yet to emerge from anyone of them. 

In 1969, Aharonov, Pendleton and Petersen 16 introduced a new 
dynamical variable, the modular variable, and discussed how several 
nonlocal interactions could be characterized as resulting from its 
exchange. Their work indicated that modular variables could provide a 
new formalism for describing the Aharonov-Bohm effect, and more 
generally, could give a new approach to nonlocality. Because their paper 
introduced the variables, it developed them in the context of several 
examples and only sketched proofs of the main results. After studying 
their work we felt that modular variables were interesting enough to 
review and expand upon in a simpler context. What we present here is a 
discussion of our approach and a summary of what we have proved 
so far. 

II. REVIEW OF THE AB EFFECf WITH AN 
ELECfROMAGNETIC SCALAR POTENTIAL 

In order to better understand modular variables, we decided to study 
them in the context of the simplest Aharonov-Bohm effect, the one 
involving the electromagnetic scalar potential. Following Aharonov et 
al.16 we refer to this as the potential effect. In this section we give a brief 
review of the effect and its nonclassical nature. 16 

Consider a charged particle inside a conducting cylinder. The 
Schrodinger equation in this case is 

(2.1) 

where H 0 is the free particle Hamiltonian, and we take tl 1. Ifwe begin 
putting charge on the outside of the cylinder then a time-dependent 
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cylinder. The 

(2.1) 

take n= 1.lfwe begin 
then a time-dependent 

potential is created inside, but no E or B fields. In this case the 
Schrodinger equation becomes 

HI/! = i al/!;Dt (2.2) 
with 

H = Ho + qQJ(t) (2.3) 

and QJ the time-dependent potential, which is independent of position 
inside the cylinder. It is easily shown that solutions to this equation have 
the form 

t/J t/J 0 exp( ict) (2.4) 

where t/Jo is any solution to Eq. (2.1), and ct is a phase given by 

ct = q rQJ(t') dt'. (2.5) 

Since ct is independent of position, the state of any particle whose 
wavefunction lies entirely within the cylinder is changed only by an 
overall phase factor. Thus, the presence of <p(t) inside the conducting 
cylinder has no observable consequences, which is what we would expect 
classically, since the region is force-free. 

In 1959, however, Aharonov and Bohm showed that, contrary to our 
classical expectations, there are situations in which the presence of 
potentials in force-free regions can result in observable effects. They 
proposed placing a conducting cylinder behind each slit in a two-slit 
interference experiment. As the particle passes through the slits its state 
is given by 

(2.6) 

where t/J 1 is the probability amplitude for going through slit one, and t/J 2 

the probability amplitude for going through slit two. Ifno potentials are 
applied during the particle's passage through the cylinders, the 
interference pattern on the screen is described by 

(2.7) 

where (5 is the relative phase between t/J 1 and t/J2.However, if a potential is 
applied to the second cylinder during the particle's time within the 
cylinders, and removed before the particle exits, a new situation results. 
When the particle hits the screen its wavefunction can be written as 

(2.8) 
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with !Y. given by 

(1. qf~oo ¢(t)dc, (2.9) 

The interference pattern on the screen is then described by 

I/IN, = 11/1112 + 11/I212+2\l/Illl1/12Icos(j + (1.), (2.10) 

Thus, the interference pattern is predicted to shift even though the 
particles creating it are never acted upon by any force. The shift is gauge 
invariant, as we would expect, but shows that some type of interaction 
has occurred, which, from a classical point of view, is a surprise, 

The approach that Aharonov el al. take to this is as follows: Normally 
we describe an interaction by finding some variable that it changes. In 
classical physics, for example, it is the change in a particle's momentum 
that characterizes its interaction with a source. In light ofthis we ask: is it 
possible to describe the interaction in the potential effect in terms of the 
change of some variable belonging to a particle contributing to the 
interference pattern? For examplc, we can ask if (p), where p is the linear 
momentum of a particle along the screen, depends on (1.. Ifnot. then the 
interaction leaves the momentum unchanged, and hence is nonclassical. 

We have proved what Aharonov et al. suggested to be the case, that 
the interaction leaves (p") unchanged, for 11 a positive integer. That is, we 
have proved that the interaction does not affect the linear momentum, 
kinetic energy, or any higher moment of the particle's momentum. Our 
proofdepends on the fact that while the particle is in the cylinders 1/1 1 and 
1/12 are nonoverlapping, and requires the cylinders to be short enough 
and wide enough so that during the time the particle is inside the 
spreading of 1/1 1 and 1/12 is unimportant. 

Having proved that (p") is unaffected for n 1,2,3, ... , we can then 
use this result to prove that (x") is also unaffected. In this 
way we have proved that, although the interference pattern shifts when 
the potential is applied, the interaction that causes the shift does not 
affect any moment of the position or momentum of any particle 
eontributing to the pattern. 

III. MODULAR MOMENTUM 

Aharonov et al. indicated that there is a variable whose expectation 
value does change in the potential effect. If we assume that the two slits 
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are centered at x 0 and x I, and take p to be the x component ofthe 
momentum operator, then the variable they ask us to consider is 

A = (po/2n) sin 2nplpo (3.1) 

with Po = hit. Knowledge ofA determines P within a multiple ofPo, so A 
is related to the momentum modulo Po' For convenience, we simply call 
A the modular momentum. 

We can give two heuristic arguments that a variable like A should be 
important in the potential effect. 16 From a physical standpoint, we know 
that a particle which lands at a maximum in the interference pattern will 
be in one of the directions 0 for which 

I sin 0 itA (3.2) 

where n is an integer and A the wavelength of the incident particle. This 
equation is easily rewritten using the de Broglie relation to read 

p=hsinO/), Itpo. (3.3) 

Thus, a particle landing in a maximum has had its x component of 
momentum shifted to some multiple of Po by the two-slit barrier. If a 
potential difference is applied to the cylinders and the experiment run 
again, then the maxima are created by particles with momentum 

(3.4) 

where 0 < p < Po' Thus, the interaction between a charged particle and 
the source of potential causes a shift of momentum in fractions of Po' 
This suggests that the interaction will be dcscribed by a variable simply 
related to the x momentum modulo Po. 

From a mathematical standpoint, we note that if we express the 
modulo variable as a sine or cosine function, then its expectation value in 
the momentum representation will involve quantities like 

flI(p,t)* e-uPIji(p,t)dp (3.5) 

since 2np/po = lp.lfwe let I be a variable, rather than fix its value as the 
slit separation, then the integral (3.5) is simply the Fourier transform of 
the momentum probability density 1111 2 

, This means that knowledge of 
sin lp or cos lp for all values of I will be equivalent to knowledge of the 
momentum distribution itself, and if the interaction changes 11112 at all, 
it should also change its Fourier transform, and hence (A). These 

http:effect.16
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considerations lead us to believe that A, as defined in Eq. (3.l), will be 
important in describing the interaction. 

We have been able to prove the following results about A: 

(1) In the Heisenberg picture, A evolves according to 

d 1 ilp
dt A(t) 21 {[Vex + I, t) V(x, t}]e

+ [Vex, t) - vex - I, t)]e-ilp} (3.6) 

where Vex, t) is the potential energy of the particle and all operators are 
in the Heisenberg picture. Thus, the time evolution of A(t) depends upon 
the potential energy at several different points in space at the same time. 
This means that the change in A(t) is determined by a nonlocal equation, 
even though the Hamiltonian 

H = p2j2m + Vex, t) 
is local. 

(2) If we multiply Eq. (3.6) on the left by ljJ(x,O)*, on the right by 
ljJ(x,O), and integrate, we find 

d (A) = _f+a)[V(X + l,t) - V(X,t)] 
dt _ 00 1 

x [ 1!(x;'9)~IjJ(X±I'9); ljJ(x + I, O)*IjJ(x, 0)] dx. (3.7) 

This equation was derived by Aharonov et al. in the Schrodinger picture, 
is true for any wavefunction, and gives the time evolution of (A). As 
Aharonov et al. note, in the limit as I goes to zero, Eq. (3.7) reduces to 
Ehrenfest's theorem 

~(p)=/ _~V). (3.8)
dt \ ox 

This means that Eq. (3.7) is a generalization of Ehren fest's theorem, and 
that we can identify the potential difference inside the integral as a 
generalized, nonlocal force. If we confine ourselves to two-slit 
interference experiments, then ljJ(x, 0) is very well peaked about the slits 
at x = 0 and x = I, and Eq. (3.7) becomes 
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This shows clearly that it is finite differences of the potential energy, and 
not forces, that lead to a change in <A>. 

(3) If we evaluate <A> in the Schrodinger picture, 


1 f+
<A>. t/I(x, t)*[(ei1p e- i/P)]t/I(x, t) dx (3.10)
21 - ro 

we find that when the particle hits the screen 

<A> = (hI2/) sin ct. (3.11) 

Thus, <A) is changed by the interaction. 

(4) The results of (2) and (3) together lead to an interesting 
mathematical question. Suppose that, rather than expressing the sine 
function in Eq. (3.10) as the sum oftwo exponentials, we had used instead 
its power series representation. In this case we might have argued that, 
since none of the moments of the momentum is affected by the 
interaction, the modular momentum should also remain unaffected. 

The problem with this argument is that the power series 
representation of the sine function cannot be applied to all 
wavefunctions. At the very least it can only be used on wavefunctions 
that are infinitely differentiable, and for which the resulting power series 
is uniformly convergent. On the other hand, a wavefunction need only be 
2 2(R) to be a member ofthe Hilbert Space. In our case, even though our 
two-slit wavefunctions may be infinitely differentiable, they are not 
analytic. This is because the physical conditions require them to be 
identically zero in an interval along the x-axis, and the only analytic 
function for which this is true is the trivial function. Since our two-slit 
wavefunctions are not analytic, sin lp acting on them does not produce 
the same result as its power series, and the power series argument is not 
valid. 

The same objection does not apply when we represent the sine 
function as the difference of two exponentials. The exponentials can be 
defined by their power series on a set of vectors dense in 2 2(R), called 
analytic vectors, and their properties established in the usual way.17.18 
Then, because the exponentials are continuous unitary operators their 
extension to the rest ofthe Hilbert Space is unique, and their properties 
apply to any vector in the space, including two-slit wavefunctions. The 
interesting point here is that because of the nonanalyticity of the two-slit 
wavefunctions, which is required by the physical situation, the 
interaction in the potential effect can change the modular momentum 
while leaving all the moments of the linear momentum unchi:tnged. 

http:way.17.18
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IV. 	SUMMARY 

Equations (3.9) and (3.11) show that modular momentum gives a new 
formalism and language for describing the potential effect. According to 
Eq. (3.9) the modular momentum of the particle is conserved unless a 
generalized nonlocal force acts. This generalized nonlocal force can 
cause a change in the modular momentum even when none of the 
moments of the linear momentum are affected. This is in fact what 
happens since the generalized nonlocal force is nonzero even though the 
local force vanishes wherever the particle can be found. We note that this 
description of the potential effect, in terms of the change in modular 
momentum, is quite similar to the classical description of interactions. The 
work of Aharonov et ai. indicates that such an approach can be 
generalized to other variables, such as energy, angular momentum, and 
position, and that not only will it lead to a new understanding of known 
quantum effects, but it also could provide a way to make new predictions 
of effects peculiar to quantum mechanics which have no classical analog. 
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Note Added in Proof 

For proofs of t he results described here, and their extension to the magnetic A~B effect, see 
our paper, 'Expectation Values in the Aharonov-Bohm Effect', submitted to Ph},s. Rev. 
DIS. 
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