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Starting from the concept of the pseudospinodal, the authors derive an explicit expression for the scaling
equation of state applicable to liquid-gas [and universality class (3,1)] systems. The advantages of this
equation over other phenomenological equations are: it has no adjustable, unphysical parameters; it is valid
in the metastable region; and it can simultaneously predict PVT data and the critical amplitude ratio for
specific heat. The equation also fits PVT data as well as other phenomenological equations, is easy to use,
and accurately predicts other critical amplitude ratios. It is argued that the success of this equation supports
the usefulness of the pseudospinodal, which has been questioned by certain theoretical considerations.

I. INTRODUCTION

The concept of the spinodal was first introduced
by van der W'aals, and represents the l.imit of
metastability of the one-phase state in the two-
phase region. Benedek' used this concept to de-
scribe data off the critical isochore by assuming
tbat various thermodynamic and transport proper-
ties diverge relative to a pseudospinodal tem-
perature with the same power-law dependence
as they exhibit along the critical isoc bore
when the critical temperature is approached
This concept of the pseudospinodal has been dis-
cussed clearly by Chu, Schoenes, and Fis her. '
7&ether it is useful or not is still an open ques-
tion: some theoretical considerations argue
against it, while experimental results support it.
The strongest argument against the pseudospinodal
is that it is inconsistent with the usua1. analyticity
requirements imposed on scaling equations of
state. ' Specifically, as Chu et al. ' show, the as-
sumption of a pseudospinodal leads to an equation
of state that is not analytic in density on the criti-
cal isochore for temperatures greater than the
critical temperature. Their argument can also be
used t;o show that the equation of state mill not be
analytic in temperature on the critical isotherm.
Although the equation will be smooth enough to fit
data, its lack of analyticity is inconsistent with
what has been. proved for some and what is ex-
pected from other theoretical Inodels. Even though
there is no proof that the equation of state for liq-
uid-gas systems must be analytic in the one-phase
region, ' there is no reason to expect nonanalyticity
there. Because of this Chu et al. conclude that the
assumption of a pseudospinodal. is unacceptable.
on the other hand, they find that their light-scat-
tering data support the concept of a pseudospino-

dal. This is also true of therma1. -diffusivity and
diffusion-coefficient data taken by Benedek, ' and
of viscosity data taken by Izumi and Miyake. '

In this paper we present more phenomenological
results supporting the usefulness of the pseudo-
spinodal. We show that an equation of state can be
derived from it which is successful for liquid-gas
[and universality class (3, 1)] systems. The de-
rived equation of state fits PVT data as well as
other phenomenological equations and is easy to
use. In addition, it has no unphysical adjustable
parameters and is appl. icable in the metastable
region, which should make it useful. in surface
tension and nucleation studies. We also show that
the equation can be integrated to give a simple
expression for the Helmholtz free energy. From
this expression we calculate the critical amplitude
ratio for specific heat, and find that it agrees with
that predicted by model systems for the universal-
ity class (3, 1) and with the experimental data. We
find the same to be true of the critical amplitude
ratios for the isothermal compressibility and
correlation length, Bs well as for two other uni-
versal amplitude ratios B„and A, . It is this suc-
cess in predicting universal amplitude ratios that
we find most impressive.

Although the equation of state derived from the
pseudospinodal is quite useful and has several
advantages over other phenomenological equations,
it has two difficulties that would normally be con-
sidered quite serious. First, it is not analytic in
the one-phase region on the critical isochore and
critical isotherm. Second, it is only successful
when applied to universality class (3, 1) systems.
Neither of these problems is surprising; both are
a consequence of the starting assumption. As
mentioned above, the nonanalyticity in the one-
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phase region is exactly that predicted by Chu et aE.
for any equation of state derived from the pseudo-
spinodal assumption. Since the pseudospinodal
assumption used here is based on data from uni-
versality (3, 1) systems, we do not expect the de-
rived equation of state to apply to other universal-
ity classes. Indeed, we find. that in the spherical
model the pseudospinodal assumption has an extra
term compared with the one assumed here, and
thus leads to a different equation of state. This
suggests that the form of the pseudospinodal can
depend on the particular universality class, and
that a pseudospinodal valid for one class- need not
produce an equation of state valid for other
classes.

However, given the controversy surrounding the
pseudospinodal, it is still useful to consider an
equation of state derived from it, in spite of the
two difficulties discussed above. From the prac-
tical side, the derived equation is ea.sy to use, fits
PVT data as successfully as the MLSG and parametric
equations, and has several advantages over them.
From a more aesthetic point of view, the fact that
the pseudospinodal leads to a successful and use-
ful equation of state gives new evidence supporting
the concept, which goes beyond the direct numeri-
cal fits to data presented so far. For these rea-
sons we present the equation here, and hope-that
besides proving useful it will stimulate more in-
quiry into the question of the pseudospinodal.

The outline of this paper is as follows: in Sec. II
we present the pseudospinodal assumption explic-
itly, and show how an equation of state can be de-
rived from it. %e then use this equation to fit
PVT data, and compa, re the fit with that of other
phenomenological equations. In Sec. ID, we show
how the equation of state can be used to predict
universal amplitude ratios accurately. Finally, in
Sec. IV, we summarize our results and discuss
possibilities for future work.

II. EQUATION OF STATE AND ITS FIT TO PVT DATA

A. Derivation of equation

In the critical. region, the equation of state can be
written as"

ap=np
~

ap ~' 'h(x).

In this equation Ap, is the relative chemical poten-
tial

&u = [~(p, T) —~(p., T)]p./&. ,

where p, and P are the density and pressure at the
critical point, T is the temperature, and

&p=(p- p.)/p. .

The sealing variable x is given by

x=f
f
~p /-'", (2)

&,= (p,/p)'I'. '«[T T,(p)]/—T.'i", (5)

with y=P5 —P. We call this the PseudosPinodal as
snmPtion. Note that on the critical isochore Eq.
(5) reduces to the usual expression

E =P 'I' t"
since T,(p, ) = T,.

If Eq. (5) is compared with Eq. (4) we obtain a
first-order linear differential equation for h(x):

) (*)-(—'))(.)=(—')((+—")",

with C = —Px",/I' and

x, =]~p[ ~s[T. T.(p)]/T. ,

the value of x on the pseudospinodal. Equation (6)
has the homogeneous solution kx~', with k a con-
stant to be determined by the boundary conditions.
The general solution to Eq. (6) is

h(x) = kx~'+ (x",/5F), E,( —y, —P5; 1 —P5; x), (8)

where

e = —x/x,

and, E, is the hypergeometric function. That Eq.
(8) is a solution to Eq. (6) can be verified by sub-
stitution. [Eq. (22) on p. 102 and Eq. (4) on p. 101
of Erdelyi' will prove helpful here. ]

The conditions imposed on h(x) are that (i) it is
real, (ii) it is continuous across s = —1(x=x, ), and

where f is the reduced temperature (T —T,)/T„
and T, is the critical temperature. 'The exponents
P and 5 are the usual ones describing the coexis-
tence curve and the critical isotherm. From ther-
modynamics, the isothermal compressibility E~, is
given by

(&,p') '= (eu/&p)„

and, using Eq. (1), we find the standard relation

Ic-,'=
(

~p ('-'(p/p, )9,[5I (x) —( /P)n'(x)], (4)

with the prime denoting differentiation with re-
spect to x.

The concept of the pseudospinodal gives an inde-
pendent expresion for E~'. The pseudospinodal
represents the limit of metastability of the one-
phase state in the two-phase region. On any given
isochore the compressibility diverges as the tem-
perature approaches the pseudospinodal tempera-
ture. In keeping with the form of the pseudospino-
dal supported by experimental data, '"' we assume
that the isothermal compressibility diverges at the
pseudospinodal as
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(iii) that h(x)-x" as x- ~ (z--.~).' The second
condition can be met by using an analytic continu-
ation formula for the hypergeometric series (Eq.
2, p. 108 of Erdelyi), and the continuation plus con-
dition (iii) determines tbe constant h. The result-
ing equation of state is

h(x) =~[z
~
z ~" 'r(1 a6)—r(p)/r( y)-

+,Z, (-y, —P6;1 —P6;z)], ~z
~
-1, (10a)

=a6( z), Z, ( y, P;1+P;z-), ~z~o-l,

(10b)

where Eq. (10b) is the analytic continuation of the
solution (10a) into the region

~

z
~

&1. In these
equations

\

a= e/6r,
z is given by Eq. (9}, and r(y) is the gamma func-
tion [not to be confused with the amplitude included
in Eq. (5)].

To see if Eqs. (10) are at least reasonable, we
first check that they reduce to the van der Waals
equation of state in the mean-field-theory limit.
The van der Waals exponents are p = —,', y= 1, 5=3.
Setting @=1 terminates the hypergeometric series
in (10a) at the first power in z and makes the co-
efficient of the homogeneous term zero. Equations
(10a) and (10b) both give

h(x) = x,r-'[6-' (x/x, )yP(—1 —P6)-']

=I' '(x, +x),

where we have used the result (valid for the van

der Waals model') x, =x,P5/(P5 —1). Thus the de-
rived equation of state reduces to the proper
mean-f ield limit.

B. Fitting equation of state to PVT data

In order. to see how well Eqs. (10a) and (10b)
represent real PVT data, we replace the hypogeo-
metric functions by their explicit series repre-
sentations to give

~" 'r(1 —p6)r(e)
r( y)

part in 10 . Thus in practice h(x) is a. simple poly
nomial and is easy to use.

In principle the comparison of Eq. (11) with PVT
data is quite simple. The values of P, 5, 1", and
x, (and p, and T„whi ch appear in tbe independent
variable x) are determined experimentally. The
coefficient x, is found from the requirement h(- x,)
=0, i.e.)

x, a'r(I- p&)r(p) x,
1

(12)

( h), ~ [g, (x, ) —g.„„(x,.)]'
0 2

i=1

Here, following Levelt Sengers et al. , we define

(13)

which can be solved numerically to give the ratio
x,/x, . In this way tbe function h(x) is completely
determined by four physical parameters (P, 5, x„l'),
the minimum necessary under the hypothesis of
two-scale-factor universality, ' and can be com-
pared with its experimental value

~

&p,
~
/

~
~p

~
.

In practice the four physical parameters (as well
as p, and T,) are only fixed within ranges defined
by experimental uncertainties. We have used a
grid search constrained by these ranges to find the
values of the physical parameters that produce the
best fit.

Since our goal was to compare the fit of our
equation to PVT data with that of other phenomeno-
logical equations, we followed the analysis of
Leve1.t Sengers et gl."as closely as possible, and
fitted the data they present. Since this data is
some distance from the critical point, we do not
expect the exponents which give the best fit to be
very close to the most recent theoretical values""
of P =0.324+0.006 and 5=4.82+0.06. Rather, we
expect x, and P to fall within the range determined
by coexistence-curve data, and T, to be close to
the experimental value of the critical temperature.

The quality of the fit was determined by the
method described by Levelt Sengers et al. , which
consists of minimizing the reduced variance

-p6 n- P5 nt
n=0

= DP6(- z)'g n+P nt '
n=O

with D given by Eq. (11), z by Eq. (9), and

(11a)

(11b)

g, (x) = [x,/(x+ x,)]h(x),

g...&(x) = [x./(x+ x.)] I
&u f/ /

&p f,
and find that

(14)

(16)

(-y).=r(n-y)/r(-y)= = (-y ~-I).
j=l

When fitting PVT data we find that for about 909'
of the points we need only three terms in the ap-
propriate series to get h(x) to an accuracy of one

(16)

The absolute-weight assignments a„o~„, and O~p

were taken from their paper, and, following them,
we on1y attempted to fit data within a critical re-
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t l&0.03 a"d I~~I&02
ta points within this region were discarded.

In the case of helium-4, Levelt Sengers et al.
give experimental values and ranges for x» P, T„
and p, . Fixing p, at their value, we find a mini-
mum X' of 2.4 for

P=0.36, x =0.38, T, = 5.191 K,

1"= 0.16, 6 = 4.18 ()P = 2.4) .

&C

z
X
z
CI

0.8

0.4

0.2

—0.2

P = 0.36, xo = 0.37, 1 =0.15,

6=4.24 (T, =5.1885 K, )f2=2.9), (18)

which is also acceptable, given the uncertainties
in the data.

A graph of the theoretical versus experimental
values of h(x} is presented in Fig. 1. The solid
line represents the theoretical curve for helium-4
calculated from Eq. (11)with the best-fit para. —

meters given in Eg. (17). The circles represent
the experimental values of

l
hp l/ l

4p l' given by
Levelt Sengers et gl. The fit is seen to be quite
good, and certainly comparable to a similar fit of
the MLSG equation. " A scatter plot is presented
in Fig. 2 which also compares well with similar

This compares well with the minimum X' calcu-
lated by Levelt Sengers et al. of 2.52 for the
MLSG equation and 2.44 for the linear model. The
values of P, xo, and 1 are essentially the same as
those which give the best fit of the other equations,
with P and x, both falling within the experimental
range determined from coexistence-curve data.
The values of 5 and T, are, respectively, slightly
lower and higher than those giving the best fit for
the other equations. If we fix T, at the average
experimental value" of 5.1885 K, we find a mini-
mum X' of 2.9 for

-0.4

—O. B

—-0.8
0.1 1 1GO

(X+X )/X

FIG. 2. Deviation plot for the points in Fig. 1, with

4h(x)/h(x') = (hth~p —h~y)/h~.

10 1000 10 000

plots from the MLSG equation"" and the linear
model. "

For xenon, we find a minimum X' of 1.8 for

P=0.37, xo=0.19, T,=289.75 K,

I' = 0.06, 6 = 4.35 (y' = 1.8) . (19)

Again p and x, fall within the experimental ranges,
and are essentially the same as the values which
produce the best fits for the MLSG equation and
the linear model. " The best fit for the MLSG
equation has X'=1.99, and for the linear model X'
= 1.46. Again the 6 in Eq. (18) is a little lower
than those that give the best fit for the other two
equations, while T, is a little higher. If we fix T,
at 289.74 K, which gives the best fit for the other
equations, we find X'=1.9 with the same values of
the physical parameters given in Eq. (19). Graphs
for xenon using the parameters of Eq. (19}are
shown in Figs. 3 and 4.

10

(X+X )/X

100 1000 10

(X+Xo)/X o

100 1000

FIG. 1. Graph of the experimental values of h(x) for
helium-4 tdots], as calculated from Levelt Sengers et al.
(Ref. 10), vs the theoretical value of h(x) calculated from
Eq. (11) tline].

FIG. 3. Graph of the' experimental values of h(x) for
xenon [dots], as calculated from Levelt Sengers et al.
P,ef. 10), vs the theoretical value of h(x) calculated
from Eq. (11) tline].
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0.8
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x 0.2
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—0.4
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—-0.8
0.1 10 100

(X+X0)/X,

1000 10 000

FEG. 4. Deviation plot for the points in Fig. 3, with
~h(x)/h(X) = (h~~r —h~y)/h~~.

As predicted by Chu et al. ,'theequationof state
given in Eqs. (10) and (11) is analytic in hp and t
every where except on the critical isochore (4p
=0) and critical isotherm (t=0). The nonanalytic-
ity in temperature on the critical isotherm is due
to the x

~

x
~

' term, which makes the equation of
state have only one continous derivative in tem-
perature at x= 0 for P -—,

' and 6-4.8. The nonana-
lyticity in density on the critical isochore can be
seen by examining the power series for 6p, as
x- ~ (bp-0). In this case, k(x) is represented
by Eq. (11b), and is a power series of terms x" ",
with n=0, 1, 2, .. . . Using x as given by Eq. (2)
in this series, we find

&p=&pgf„(t)&p"", x-". (2o)
a=0

For P- —,', 6p has four continuous derivatives in
density on the critical isochore, but is not analytic
there. On the other hand, b, p, is smooth on both
the critical isochore and isotherm (satisfying
Griffith's original intent~), and the uncertainties
in the data make the experimental determination of
derivatives of 4p, very difficult. In any case, as
discussed above, the nonanalyticity is to be ex-
pected from the approach and comes from assum-
ing that the pseudospinodal has the same exponent
P as the coexistence curve —an assumption re-
quired by the scaling hypothesis' and supported by

In conclusion, we see that for helium-4 and
xenon, the equation of state derived from the pseu-
dospinodal can fit PVT data as successfully as
other phenomenological equations zvithout using any
unphysical, adjustable parameters, and is easy to
use. Work on fitting PVT data from other gases is
in progress, and will be reported in a later work.

C. Analyticity of equation of state

data."' A modification that might eliminate this
nonanalyticity is discussed in the Conclusion.

III. UNIVERSAL AMPLITUDE RATIOS

E = I"'
~

t
~

"(p,/p)'P, '. (21)

The pseudospinodal assumption [Eq. (5)] gives an
independent expression for K~ also valid on the
coexistence curve. If we equate the two we find

r/r' = (x,/», —I)" . (22)

The ratio x, /x, is uniquely determined by P and 6
from Eq. (12), thus making it a constant for the
universality class. For the most recent theoreti-
cal values" "' of P=0.324+0.006, 6=4.82+0.06, we
find x,/x, =0.218 +0.003 and

r/r' = 4.86 +0.4. (23)

This value compares well with the experimental
values of 4.5 (Ref. 10) and 4.9,"and with the val-
ues predicted by the series Ising model (5.07) and
the e expansion (4.80).'~

Relations analogous to Eq. (22) can be obtained
for other parameters diverging on the compressi-
bility pseudospinodal. For example, the correla-
tion-length ratio satisfies the equation

t'. /h, =(x,/x, —1)- . (24)

Using the above values of P, 6, and v= 0.63 +0.002
(Refs. 11 and 12), we find

$',/$0 = 0.448 a 0.016 . (26)

This compares quite well with the experimental
values quoted by Sengers and Levelt Sengers" of
0.49 +0.05 and 0.45 + 0.1, and with the prediction
from the series Ising model of 0.51."

In Sec. III we calculate the critical amplitude ra-
tios for the isothermal compressibility, correla-
tion length, and specific heat. In addition, we also
calculate the universal amplitude ratios R„and
R,." We find that all of the predicted values com-
pare well with those from other theoretical meth-
ods and with the experimental data. This means
that the equation of state (10) is the only phenom-
enological equation able to simultaneously fit both
PVT data and the critical amplitude ratio for spe-
cific heat. " We show that all of the amplitude
predictions are quite straightforward, and follow
directly from the pseudospinodal assumption and
the equation of state.

The easiest ratios to calculate are I'/1"' and
g', /$„ the critical amplitude ratios for the isother-
mal compressibility and correlation length. We
calculate I"/I"' as follows: if the critical point
is approached from below along the coexistence
curve, then
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Before discussing the specific-heat critical am-
plitude ratio, we can calculate"

R =era'-'=r.
X

Using 8 = x~o a,nd D = x",/6 I', we find

(26)

~„=(,/x, )y 6-',

which gives the numerical result R„=1.4 +0.1 for
(as above) y=1.241+0.004 and 6=4.82+0.06. This
is comparable to the experimental values of 1.4
(Ref. 10) and 1.69." The series Ising model pre-
diction is 1.75, and that of the & expansion'~ is 1.6.

Before cal.culating the critical. amplitude ratio
A/A' for specific heat we note that the three ratios
discussed above are all completely determined by

P and 6, and by the zero of the equation of state
(which is itself determined by P and 6). We will
find this is also true of the ratio A/A'. Thus the
universality of the amplitudes is ensured in this
approach. Whether the dependence of all critical
amplitude ratios on the zero of the equation of
state is a general feature, or is just an artifact of
the pseudospinodal approach is as yet unknown.

However, this dependence is new, and its signifi-
cance remains to be explored.

The calculation of the ratio A/A' is also
straightforward, though more tedious. Following
the standard procedure, ' we write

A (&(o, f) =
~

&p
~

"'u(x) (28)

a(x(= cx' +((x"-f y 'a(y)rry . (29)

In this equation n = 2 —, p(6+ 1) is the specific-heat
exponent (which for fluids is about —', ) and c is a
constant to be determined by the boundary condi-
tions. Since h(x) is given by a power series, Eq.
(29) is easy to integrate. Following the standard
procedure, "we can use Eq. (29) to obtain A and
A'. The only new feature is that in order to make
the integral in (29) convergent at x= 0, not only do
we need to subtract off the first two terms in the
power-series expansion of h(x) (as is usually
done), but the homogeneous term as well. We find

A = np(1 —n)(2 n)
~+

p5
x dyy ' h{y) -ho h~+k

0 Xg
(30)

for the critical part of the Helmholtz free energy
per unit volume in dimensionless units. Using
equations (1), (28) and b, p= [BA/8(hp)]r, one finds
that the scaled part of the free energy is related
to h(x) by

Ph(x) = —m'(x)+ P(6+ 1)a(x),'

with solution

A'=np(2-n)(1-n)x -' 6-
~y~

-' h(y)+k y
~

y ~8'-'-h, -h,y dy — a ~' ' + ~"0
x, ' 'y y Px, 2-n'1 n' (31)

These expressions are completely analogous to
those of Barmatz et gl."for 0&0, &1, the only dif-
ference being our treatment of the homogeneous
term. The constants are easily seen to be

k=Dr(1 p6)r(p)/r( ~),
h0=D,

h, = -~P6y/(I -P6)x„

(32)

(33)

with D given by Eq. (11). If the series (11) for
h(x) is substituted into Eqs. (30) and (31), then it is
straightforward to calculate A/A'. Again we find
that the ratio is determined by P, 5, and the ratio
x,/x, (which is the zero of the equation of state).
We also find that A/A' varies quite rapidly as P
and 5 vary within their currently accepted ranges.
For P = 0.324, 6 = 4.82 we find

A/A' =0.58.

This lies within the range of experimentally mea-
sured values, whose minimum is 0.44 (for He') and
maximum is 0.63 (for xenon). " The series Ising
model predicts a value of 0.51, and the g expan-

sion" a value of 0.55.
If we let P vary by a 0.006 around 0.324, and 6

by 0.06 around 4.82, the variation of A/A' is extra-
ordinarily large. For example, if we fix P at 0.324
and allow 6 to vary, A /A

' has a minimum value of
0.45 for the minimum 6 (4.76), and has a maximum
value of 0.78 for the maximum 6 (4.88). This large
variation is probably due to the nonanalyticity of
the equation of state at x=0.

Finally, having calculated A and R„, we can cal-
cul. ate the universal amplitude ratio R,". If we use

A = D"'x ~A
0

then Rg ARx p and w e flnd

R, = 0.04+0.01.
This is comparable to the results from the series
Ising method (0.059) and the e expansion" (0.066).

IV. CONCLUSION

'The approach presented here is based on the
concept of a pseudospinodal described by Eq. (5).
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Although the pseudospinodal leads to an equation
of state with (expected) nonanalyticities in the one-
phase region, we see that the equation is quite suc-
cessful in fitting PVT data and critical amplitude
ratios for universality class (3, 1) systems. As
mentioned in the Introduction, we find that the
pseudospinodal equation in the spherical model
[universality class (3, n-~)] ts the same as Eq.
(5), but with an extra (density-dependent) term on
the right-hand side. It is possible that this term
should also be present in Eq. (5), but that its mag-
nitude for universality class (3, 1) systems is so
small that it has not yet been discovered experi-
menta. lly. A term like this could change the values
of 6 and T, which give the best fits of the equation
of state to PVT data, and might possibly affect the
analytic properties of h(x). We are currently in-
vestigating this possibility.

In conclusion, we have demonstrated that the
concept of the pseudospinodal leads to a successful

equation of state for universality class (3, 1) sys-
tems which is as good at fitting PVT data as other
phenomenological equations, and has several ad-
vantages over them. This provides additional evi-
dence that the concept of the pseudospinodal is a
useful one, and should not be discarded solely for
reasons connected with analyticity. We hope this
work stimulates more experimental and theoretical
interest in the pseudospinodal.
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