NMR Spectroscopy for Studying Chirality

Thomas J. Wenzel Department of Chemistry Bates College Lewiston, Maine 04240 twenzel@bates.edu

Chiral Discrimination NMR Spectroscopy Chiral derivatizing agents Chiral solvating agents Metal complexes Liquid crystals

Chiral Derivatizing Agents

 Form a covalent bond between an optically pure reagent and the compound of interest

> CDA + (R)-Sub = CDA-(R)-SubCDA + (S)-Sub = CDA-(S)-Sub

Resulting compounds are diastereomers

Chiral Discriminating Agents

No racemization

No kinetic resolution

 Need 100% optical purity of the reagent if using for the determination of enantiomeric excess

Chiral Solvating Agents

 Form non-covalent interactions between an optically pure reagent and the compound of interest

> CSA + (R)-Sub = CSA-(R)-SubCSA + (S)-Sub = CSA-(S)-Sub

Resulting compounds are diastereomers

 K_R and K_S are likely different – causes different time-averaged solvation environments

Chiral Solvating Agents

Preferable to have fast exchange

 High concentration of CSA usually leads to larger discrimination

 Often see enhanced enantiomeric discrimination at lower temperatures

Assigning Absolute Stereochemistry

- Mechanism of discrimination is understood and characteristic shifts occur in the spectrum
 - More common with certain families of chiral derivatizing agents
 - Possible with some chiral solvating agents

Empirical trend

 Best if use known model compounds as close as possible in structural features to the unknown

Aryl-containing Carboxylic Acids -Alcohols and Amines

Aryl-containing Carboxylic Acids

• MTPA = α -methoxy- α trifluoromethylphenylacetic acid • MPA = α -methoxyphenylacetic acid O-AMA = O-acetyl mandelic acied • CFTA = α -cyano- α -fluoro- ρ -tolylacetic acid • N-Boc PG = N-boc phenylglycine • $M\alpha NP = 2$ -methoxy-2-(1-naphthyl)propionic acid • 2-/9-AMA = α -(2-anthryl)- α -methoxyacetic acid

Mosher Method/Modified Mosher Method

- -Prepare derivatives with (R)- and (S)-forms of the reagent
- -Syn-periplanar arrangement of HC-O-C(O)-C atoms (secondary alcohols)
 -Calculate Δδ^{RS} values negative for L₁, positive for L₂

 $PPA = \alpha \text{-phenyl-}$ propionic acid

$\Delta \delta^{RS}$ depends on:

-Degree of conformational preference/how it influences the shielding
-Size of the shielding (anthryl > naphthyl > phenyl)

Secondary Alcohols

- MPA > MTPA (conformational preference that produces greater difference in shielding)
- MPA early synthetic procedures high degree of racemization
- Better procedures for MPA derivatization now exist
- Mix and shake method

MPA derivative

2.7 Hz differential shielding for the methyl group9-bonds removed From the chiral center

Effect of temperature

- For MPA derivatives of secondary alcohols, lowering the probe temperature by about 100 K (to 175-200K) approximately doubles the Δδ^{RS} values
- Alters conformational preference further toward the sp form
- Can measure Δδ_{T1T2} values as a confirmation of stereochemical assignment
- Effect not as pronounced with MTPA or AMA

Barium Method MPA/secondary alcohols

sp

sp-Ba⁺² complex

 $H = \begin{bmatrix} Ph_{1} \\ H \\ Ba^{+2} \end{bmatrix} = \begin{bmatrix} Ph_{1} \\ L_{1} \end{bmatrix} = \begin{bmatrix} Ph_{1} \\ L_{2} \\ L_{1} \end{bmatrix}$

ap-Ba⁺² complex

Barium binds in a chelate manner with the ester and alters the conformation preference toward the *sp* conformer.

Leads to enhancement in the shielding and get larger $\Delta\delta^{RS}$ values.

La(hfa)₃ method with MTPA Secondary alcohols

Chelate bonding of the La reverses the orientation of the phenyl ring and the shifts of the hydrogen resonances

This reversal in shifts can be used to confirm the stereochemical assignment

2-AMA/9-AMA – Linear vs cyclic secondary carbinols

MαNP (secondary alcohols)

- $\Delta\delta^{RS}$ about 4-times greater than with MTPA

-Less prone to racemization with methyl group on chiral carbon

CFTA (secondary alcohols)

- The Δδ^{RS} values are typically 2-times greater than MTPA
- Much faster reaction than MTPA with hindered compounds
- ¹H and ¹⁹F NMR can be used

CFTA - Conformational Preference syn-periplanar arrangement

Secondary Diols and Polyols

 If groups are far enough apart, can determine the configuration of each group independently

 If groups are close together, bound reagent may influence the shielding or deshielding at more than one site

MPA for Diols

Analysis of (*syn* and *anti*):
 1,2 1,3 1,4 1,5-diols with known configurations

 Observe reproducible trends that can be applied to compounds with unknown configurations

Primary Alcohols

• MTPA – C_2 chiral

Tertiary Alcohols

Secondary Amines

- MTPA

• H_2 had a $\Delta \delta^{RS}$ of 2.44 ppm!

 Values so large only need one MTPA derivative (use (*R*)-acid chloride since more reactive than (*S*)-acid chloride)

Primary Amines – α-substituted

 MTPA gives larger Δδ^{RS} values than MPA or 9-AMA - MTPA amides have greater preference for the *sp* conformer than observed with esters.

 BPG – preference for *ap* conformer – typical Δδ^{RS} values are 2- to 3-times larger than with MTPA

 MTPA

Aryl Methoxy Reagents - Summary

Want larger Δδ^{RS} values – either through high conformational preference or larger aromatic ring (shielding)
 Values should all be positive for one substituent (L₁) and negative for the other (L₂)
 Need resonances in both substituents

pro-(R) and pro-(S) positions of α-deuterated primary and secondary alcohols

Primary amines as well

Camphanic Acid

2-(2,3-Anthracenedicarboximido)cyclohexane carboxylic acid

Analysis of primary and secondary alcohols – especially effective for compounds with remotely disposed chiral centers

2,2,2-Trifluoro-1-(9-anthryl)ethanol (TFAE) (Pirkle's Alcohol)

Versatile chiral solvating agent -Can determine optical purity -Can assign absolute configurations for certain classes of compounds

Absolute Configurations - TFAE

Sulfoxides

N-oxides

Amino Acids

Absolute Configurations - TFAE

Oxaziridines

Imines

TFAE – Enantiomeric Purity

Epoxides

2,3-diamino succinate – methine signals for *meso* versus *dl*-isomers

Axial Chiral Compounds

 NH_2

Slow Rotation

TFAE – Enantiomeric Purity

Metal Complexes

Phosphine Oxides

Calixarenes

Alcohols as CDAs for Carboxylic Acids

Methyl mandelate

2-(2,3-anthracenedicarboximido)-1-cyclohexanol
Glycosidation Shifts

- React secondary alcohol with D-glucose or D-mannose
- Pronounced differences in the ¹³C NMR spectrum that correlate with absolute configuration – see trends in both sugar and alcohol resonances

 Also see differences in the ¹H NMR spectrum of secondary alcohols with tetra-O-acetylglucose

β-D- and β-L-Fucofuranoside and Arabinofuranoside

- Use tetraacetate derivative of sugar (arabino easier to prepare)
- React with secondary or tertiary alcohol
- Also works with 1,2-glycols
- Alkaline hydrolysis of acetate groups
- See differences in the ¹H and ¹³C spectra of product that correlate with absolute configuration

2,2'-Dihydroxy-1,1'binaphthalene (BINOL)

 Potential chiral solvating agent for several classes of substrates including alcohols, sulfoxides, selenoxides, amines, ketones, amides, and amino alcohols

Butane-2,3-diol/Butane-2,3-thiol

 Chiral derivatizing agent for the analysis of chiral ketones – produce diastereomeric ketals

 For cyclohexanones in the chair conformation, the ¹³C shifts correlate with absolute stereochemistry

PEA, NEA and AEA

Useful with carboxylic acids -chiral solvating agent – formation of diastereomeric salts -chiral derivatizing agent – formation of amides – can assign absolute stereochemistry with certain compounds

PEA, NEA and AEA

Phosphorus thioacids

Phosphonic acids

Sulfonyl chlorides

Isocyanates

PEA, NEA and AEA - Ketones

Method 1

- Convert to acid oxime using NH_2OCH_2COOH - Add NEA to form salt - see discrimination

Method 2

 Reductively aminate the enone with PEA perchlorate – see discrimination in products

Phenylglycine methyl ester and dimethyl amide (PGME)

Absolute configuration of carboxylic acids – $\Delta \delta^{RS}$ values

α -Substituted

β , β -substituted acids

PGME - examples

но'''

Me

Ĥ

Ξ H

1,2-Diphenyl-1,2-diaminoethane

3-substituted cyclohexanones and cyclopentanones -forms the corresponding aminal -can determine enantiomeric purity

N,N-Substituted 1,2-diphenyl-1,2-diaminoethane

Reacts with Aldehydes -forms the corresponding imidazolidine -can be used to determine enantiomeric purity

Amides as Chiral Solvating Agents Soluble Pirkle LC Phases

N-(3,5-Dinitrobenzoyl)-1-phenylethylamine (DNB-PEA)

N-(3,5-Dinitrobenzoyl)-L-leucine (DNB-Leu)

N-(3,5-Dinitrobenzoyl)-4-amino-3-methyl-1,2,3,4-tetrahydrophen-Anthrene (Whelk-O-1)

Phosphorus-based Reagents

- P(V) reagents (P=O or P=S) group
 P(III) reagents
- P(V) reagents are more stable than P(III) reagents but usually have smaller enantiomeric discrimination
- ³¹P signal usually monitored splits into two singlets for the two diastereomers for derivatizing agents

P(V) Reagents - Examples

-Alcohols and amines react at the chlorine atom-Primarily used for determining enantiomeric purity

Configurational analysis of thiophosphate monoester that is chiral by virtue of different oxygen isotopes

¹⁸O and ¹⁶O in the bridging position have different effects on the shift of the phosphorus resonance

OEt

•

• $=^{18}O$ O $=^{16}O$

Effective chiral solvating agents for:

Phosphine oxidesPhosphonatesSulfoxidesAmine oxides

-Alcohols/Diols -Amines -Thiols -Amino alcohols

P(III) Reagents

Primary, secondary and tertiary alcohols
Thiols
-Carboxylic acids
-α-hydroxyphosphonates

Primary, secondary and tertiary alcohols
Primary amines
-Carboxylic acids

[5] HELOL Phosphite

-Primary and secondary alcohols
-Phenols
-Amines
-Carboxylic acids after coupling to 2-aminophenol

TRISPHAT, BINPHAT, BINTROP

Useful for ionic compounds

TRISPHAT – Metal Complexes

λu

Ru

+

TRISPHAT, BINPHAT – Other Cations

 BF_4

BINTROP – Limited studies on anions

Configuration of Phosphates

 React (cyclize) with propane-1,2-diol

Selenium-containing Reagent ⁷⁷Se NMR

-Carboxylic acids – react at NH group
-Alcohols and alkyl halides react at selenium atom
-Amines with triphosgene react at the NH group

Ph

Effective for compounds with remotely disposed chiral centers – because of shift range of ⁷⁷Se NMR

α -, β - and γ -Cyclodextrins

Native – underivatized -Water-soluble -Effective for water-soluble substrates -Determination of enantiomeric purity -Substrates usually contain an aromatic ring (phenyl or bicyclic)

Cyclodextrins

Permethylated cyclodextrins

- - β -Derivative is more water-soluble than native β -CD
- -Organic-soluble as well

-Broadly applicable for determining enantiomeric purity -Especially useful for the analysis of allenes

Carboxymethylated (-CH₂CO₂⁻) cyclodextrins - Anionic
-Especially useful for organic cations
-Can add paramagnetic lanthanides – these associate at the carboxy group and cause shifts in the spectra that enhance the enantiomeric discrimination

Crown Ethers (18-Crown-6)-2,3,11,12-tetracarboxylic acid

Useful for primary amines
-As hydrochloride salts
-As neutral amines (neutralization reaction with crown ether)
-In methanol, acetonitrile, or water (usually best in methanol)

Crown Ethers (18-Crown-6)-2,3,11,12-tetracarboxylic acid

Useful for secondary amines
-As neutral amines (neutralization reaction with crown ether)
-In methanol
-Effective for pyrrolidines, piperidines, piperazines, alkyl aryl amines

Calix[4]resorcarenes

Sulfonated analog with L-proline groups -Water-soluble -Effective for mono or bicyclic aromatic compounds – singly or ortho-substituted

Lanthanide *tris*(β-diketonates)

dcm

tfc

Organic-soluble

 Suitable for a wide range of hard Lewis bases – oxygen- and nitrogen-containing compounds – metal complexes with binding groups in ligands

- Paramagnetism of lanthanide ions does cause broadening – worse at higher field strengths
 - Use a lower field instrument (300 MHz or lower)
 - Run ¹³C spectra
 - Use Sm(III) chelates
 - Use a polar solvent
 - Warm the sample (50-75°C)

"Chiralization" of Xenon

Racemic cryptophane binds xenon in the cavity
 Addition of Eu(hfc)₃ causes the appearance of two ¹²⁹Xe signals

Lanthanides - Absolute Configuration Empirical Trends

Alkyl aryl carbinols

- Benzhydrols
- 2-Aryloxypropionyl derivatives
- Amino acid methyl esters
- Menthyl butanoates
- *N*-phthaloyl-α-methylcyanoglycinates
- Lactones
- Epoxides and arene oxides

Secondary and Tertiary Carbinols

Use Pr(hfc)₃

- Measure ¹³C NMR spectrum
- Examine shifts of neighboring carbons
- Works for diols as well if separated by two or more carbons

Binuclear Lanthanide-Silver Reagents $Ln(\beta-dik)_3 + Ag(\beta-dik) = [Ln(\beta-dik)_4]Ag$ Effective for soft Lewis bases - Olefins - Aromatics - Alkynes – Phosphines – Halides (iodide and bromide)
Binuclear Lanthanide-Silver Reagents – Organic Salts

 $[Ln(\beta-dik)_4]Ag + R^+X^- = [Ln(\beta-dik)_4]R + AgX(s)$

Ammonium salts
Isothiouronium salts
Sulfonium salts

Lanthanide Complexes Water-soluble

Chelates of pdta (anionic ligand)

Chelates of tppn (neutral ligand)

 Effective for carboxylic acids – absolute configurations of amino acids

Palladium-Amine Dimers

-Mono- and diphosphines bind to the palladium -Can use for enantiomeric purity and absolute configuration (often with NOE data)

Palladium/Platinum Complexes

-Alkenes and alkynes can displace the ethylene ligand
-Enantiomeric purity

Platinum-Amine Complexes Covalent and Ionic

-Olefins and allenes displace the ethylene group -Measure ¹⁹⁵Pt signal - used for enantiomeric purity -Substrates have two prochiral faces -If only one face binds – two ¹⁹⁵Pt signals -If both faces bind – four ¹⁹⁵Pt signals

Platinum-Amine Complexes

Rhodium Dimer with MTPA

Rhodium Dimer with MTPA

- Olefins
- Phosphines
- Aryl alkyl selenides
- Phosphine selenides (P=Se)
- Phosphorus thionates (P=S)
- Phospholene and phospholane chalcogenides
- Spirochalcogenuranes
- Alkyl iodides, diiodobiphenyls
- Nitriles
- Oxiranes
- Oxatriazoles, thiatriazoles, tetraazoles

Zinc Porphyrins (Tweezer)

Especially effective for bifunctional substrates (diamines)

Database Techniques

¹³C or ¹H shifts

• N_{α} -Dimethylbenzylamine (DMBA)

Bis-1,3-methylbenzylamine-2methylpropane (BMBA-pMe)

Structural Motifs

OH OH Me Me

Prepare and examine all possible stereoisomers

¹³C or ¹H Database subtract chemical shift of particular nucleus in one stereoisomer from average of value in all eight

DMBA database -Difference in ¹³C shifts between (*R*)and (*S*)-DMBA

BMBA-pMe – For assigning the stereochemistry of secondary and tertiary alcohols

Binding of BMBA-pMe to a secondary alcohol

Observed trends

Liquid Crystals poly(γ-benzyl-L-glutamate) (PBLG)

Forms ordered material in a magnetic field Pair of enantiomers have different molecular orientations in PBLG Three discrimination mechanisms - Chemical shift anisotropy (least useful) – Different dipolar coupling constants (¹H-¹³C) - Differences in quadrupolar splitting (²H) (most useful)

Quadrupolar Splitting

- Not observed in solution because of rapid tumbling
- Observed in ordered media and extent of splitting depends on orientation relative to the applied magnetic field

Proton-decoupled deuterium NMR spectrum

PBLG - Incredible Versatility

Only need different packing orders Do not need specific interactions between the substrate and the liquid crystal Effective for virtually any class of compound Includes aliphatic hydrocarbons Especially effective for resonances of nuclei remote to the chiral center

Deuterium Labeling

Only need deuterium as a signal – better to use achiral reagents so no concern about kinetic resolution or racemization - Convert CO₂H to CO₂CD₃ - Add perdeutero benzoyl group (have o-, mand p-protons as potential probes Provides a single, strong signal (or a few easily assigned signals) for the analysis

Examples

 -Remote chiral center
 -²H signal for the *para*-position showed different quadrupolar splitting

(*R*,*R*)-, (*S*,*S*)- and (*R*,*S*)-(*meso*)isomer distinguished

Can distinguish (*R*,*R*,*R*)-, (*R*,*R*,*S*)-, (*S*,*S*,*R*)- and (*S*,*S*,*S*)isomers

Perdeuterated/Natural Abundance ²H

Complicated spectra

- each ²H signal is a doublet
- each ²H signal may be two doublets if the enantiomers have different quadrupolar splitting
- can't predict a priori the magnitude of the quadrupolar splitting

 Procedures have been devised to aid in the assignment of ²H spectra