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Abstract

Can officially reported output statistics be externally validated using other verifiable signals
of economic growth? Satellite measured readings of nitrogen oxide emissions — a byproduct
of combustion = are forwarded for this purpose. Then, a statistical methodology is proposed
which allows one to utilize this and other signals, including nighttime luminosity, towards the
construction of confidence intervals for output. Finally, the problem of validating China’s reported
GDP during two recent economic downturns is considered. Reported figures during the Great
Recession period are validated for some subnational regions, but not others, including Chongging
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1 Introduction

Can officially reported output statistics be externally validated using other verifiable signals of
economic growth? This question is especially pertinent to Chinese series, which have long been

cast under suspicion by economists. While opaque statistical methods employed in data collection
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represent one cause for concern,: another more insidious issue is systematic data manipulation.
Such man-made anomalies hav@ historically been pronounced during recessionary episodes in
particular, when they become relétively more politically opportune (Wallace, 2014). For example,
during the height of the Asian Financial Crisis in 1998, China reported a relatively robust 7.8%
year-on-year rate of growth. This figure appears to be a clear aberration not only regionally, but
also in the context of sharper contemporaneous declines in energy consumption statistics (Rawski,
2001). Similar concerns arose during the Global Financial Crisis and ensuing Great Recession
period of 2007-2009, an era during which output data appears ex-post to have been too smooth
(Nakamura et al., 2016). But pairwise incompatibilities with other conventional indicators of
growth, such as electricity generation, were evidently more muted during this latter episode.
Indeed, both indicate a healthy rise in economic activity over the NBER recession dates, 2007
Q4 - 2009 Q2 (Figure 1 (a)). Perhaps due to this redundancy of information, economists have
in this case come to more mixed conclusions as to the viability of reported statistics; Fernald
et al. (2013) argue that industrial production indices corroborate reported GDP data, while the
opposite case had previously been made by Koech and Wang (2012). Given that the Chinese
economy now seems poised for another period of protracted sluggishness, the question of reliably
validating officially reported output statistics plainly deserves further attention.

Statistics which are merely indicative of aggregate output are usually called signals of eco-
nomic growth. Fundamentally, their relationship with GDP is not one-to-one. In order to make
substantive conclusions regarding output from any signal, it must first be transformed into a
prozy. To make this transformation, one must know or otherwise be able to estimate the elastic-
ity of growth with respect to the signal. The most notable proxy for economic growth in China

is the “Li Index,” named after Chinese Premier Li Keqiang. As then Party Secretary of Liaoning

province, Li was widely cited through Wikileaks cables as using electricity consumption, volume

!Chang et al. (2015) have only recently developed an annual and quarterly macroeconomic time series dataset for
China comparable with those commonly utilized in empirical research on Western economies.



Figure 1: Reported GDP and electricity generation: 2006-2013.

(a) Reported GDP vs. electricity generation: All China.
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of rail cargo, and the amount of loans disbursed as signals from which to infer his measure (e.g.
Batson, 2010). The fact that Party elite would be forced to rely on such a proxy offers perspective
on a key aspect of Chinese political economy. The national government of China naturally desires
accurate statistics for the purpose of policymaking, and theories of manipulation at this vantage
are usually refuted (Chow, 2006).2 However, independently functioning provincial and municipal-
ity officials, vying for power, involve themselves in a promotional tournament for advancement;
their ascent is contingent upon annual performance reviews that include GDP statistics from their
district (Chen et al., 2005).3 Inasmuch, it is the local-level change in signals which is relevant
for proxy construction, as this is the scope at which numbers are potentially managed; variance
across regions may be substantial (Figure 1 (b)).*

And yet, is there potentially something awry in regional electricity generation data itself?
While we have no way of knowing exactly how Li formally or informally transformed these regional
signals, two assumptions are always necessary to identify the elasticity required for inference: (1)
The signal is reliable, and (2) the relationship with output is known. With respect to industrial
production indices, a case may be made for the latter qualification. But given the limelight
shed on the Li index, the former can no longer be assumed. Indeed, a common viewpoint is
that data manipulation has become more cunning in recent years (Koch-Weser, 2013).5 Willful
“reconciliations” of reported output and conventional signals like electricity generation — which
are also typically reported by individual regions — are perhaps too speculative to assume, but
at the same time can not simply be assumed away. Moreover, energy consumption itself has
become a performance measure for promotion of local officials, thanks to the recently introduced
mandatory target of energy intensity (Sinton, 2002; Ghanem and Zhang, 2014). Indeed, Liu et al.
(2015) estimate that energy consumption in China during the 2010-2012 period was 10% above

officially reported statistics.®

2The national government has publicly ventured to cut down on associated graft. In early 2016, Wang Baoan, director
of China’s National Bureau of Statistics, was put under scrutiny by the Communist Party for what it called “serious
violations.”

3As evidence of the competing objectives of local and national officials, beginning in 1998, China’s National Bureau
of Statistics publicly began to bypass some provincial governments in data accumulation.

4 Analogues to Figure 1 (a) for each subnational region depicted in Figure 1 (b) are given in the Online Appendix to
the this paper, Appendix A, Figure A.1.

5Holz (2014) has argued that previously offered evidence of data manipulation in China is woefully not compelling,
and that China’s National Bureau of Statistics has the freedom to doctor figures in a “virtually undetectable” manner.

8 Another potential cause of apparent data inconsistencies is that the structural relationship between electricity



Given these concerns, it is desirable to creatively seek out signals which are guaranteed to be
free of systematic distortion. Fernald et al. (2015), for example, ingeniously use the volume of
imports to China, as reported by trading partners.” The benchmark in the realm of autonomous
growth measurement more generally is nighttime luminosity, or “night lights.” This signal is
not only naturally indicative of energy consumption, but measured by orbiting international
satellite instruments, and publicly available.® Henderson et al. (2012) pioneered the application
of this dataset to formally producing combined measures of economic growth — optimal weighted
averages of proxy and reported growth — in areas where data collection is otherwise challenging.
Unfortunately, a follow-up study by Chen and Nordhaus (2011) casts doubt on the usefulness of
luminosity towards constructing proxies for growth in China or other middle income countries.
Their conclusion is that luminosity is useful mainly in countries with little or no operative systems
for data collection. In addition, luminosity data series are available at no higher frequency than
an annual basis, making them unsuitable for the construction of combined measures at the more
commonly studied quarterly interval. Furthermore, the DMSP-OLS luminosity dataset currently
only ranges from 1992 to 2013, an annual time dimension of just T' = 22. Inasmuch, one must
generally exploit the cross sectional, rather than time series dimension of the data, for estimation.
As substantiated below, this restriction may be problematic when considering a technologically
diverse country like China.

Still, the proposal of utilizing remote sensing technology to retrieve useful signals for combined
measure construction is promising. This paper forwards the use of nitrogen oxide (NOyx) emissions
retrieved from multiple international satellite instruments. Satellite measurements of NOy, a
byproduct of anthropogenic sources primarily including combustion but also biomass burning,
have already been exploited to verify Chinese energy consumption and pollution in atmospheric
science (Akimoto et al., 2006; Lin and McElroy, 2011). High spatial resolution and sampling
frequency enables one to assemble a longitudinal data set which like luminosity is guaranteed to

be free of political influence for a large portion of the Earth’s surface. But unlike luminosity, NOx

consumption and growth in China may naturally vary during downturns (Lin and Liu, 2016). However, this opposing
perspective appears to be a minority viewpoint.
"An alternative FAVAR. based methodology for dealing with the same problem is put forth in Fernald et al. (2014).
8The United States Air Force’s Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS)
nighttime lights global annual panel available at 30 arc second grids between -180 180 degrees longitude and -65 to 75
latitude is publicly available at http://ngdc.nocaa.gov/eog/dmsp/downloadV4composites.html.



Figure 2: Reported GDP and NOy emissions: 2006-2013.
(a) Reported GDP vs. NOy emissions: All China.
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data is reliable to at least a monthly basis, allowing one to consider business-cycle fluctuations
at the regional level. Furthermore, these observations range from as far back as 1996 to present,
resulting in a time series dimension exploitable for estimation.’ Figure 2 (a) replicates Figure 1
(a), but now using NOy emissions. Recall, electricity production increased 5.5% over the NBER
business cycle dates, while reported output grew 22.3%. Yet, anthropogenic emissions of NOx
fell, growing -7.8%. Given that NOx emissions are produced in the generation of electricity — for
example by coal-fired power plants — this observation seemingly bears some credence upon the
theory that electricity generation figures may be misleading. Moreover, N OX emissions indicate
a different pattern of severity of the crisis across regions (compare Figure 2 (b) with Figure 1
(b)).10 Specifically, NOx emissions depict an evident geographic dependency in downturn severity
which is not embodied in electricity generation figures. This further bolsters the usefulness of
NOx emissions in comparison with electricity generation insofar as this geographic dependence is
to be expected (Fogli et al., 2012).

To unwind these observations more formally, the second contribution of this paper is econo-
metric. Again, the pathbreaking luminosity study of Henderson et al. provides the starting point
for this analysis. The primary assumptions utilized for estimation in that context are that the
signal and true output are observed with classical measurement error, and that the elasticity of
signal with respect to output is constant across regions. In other words, asymptotic results are
of the large N, small T form. Yet this parsimony comes at some potentially significant practical
expense to the current application. As is explained below, classical measurement error precludes
the possibility of politically motivated systematic manipulation. Furthermore, the assumption
that signal-output elasticities are constant across provinces and municipalities is unlikely to hold
given the technological diversity of these areas. Viewing again Figure 2 (b), it is striking that NOx
emissions increase by a comparatively large amount in the northeastern provinces of Liaoning,
Jilin, and Heilongjiang over the NBER dates. But this result is not necessarily surprising, since
this greater region, Manchuria, is traditionally industrial, and coal dependent. In other words, the
pass-through of emissions per dollar GDP inevitably differs regionally based solely on the primary

combusted fuel source and production technology. Figure 3 underscores these regional differences

9The following section of the paper describes the dataset utilized herein more completely.
10 Analogues to Figure 2 (a) for each subnational region depicted in Figure 2 (b) are given in Appendix A, Figure A.2.



Figure 3: China regional signal vs. GDP change: NBER recession dates (2007 Q4 - 2009 Q2).
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in signal elasticities. It plots the percentage change in electricity generation and NOx emissions
over the NBER dates previously depicted in Figures 1 (b) and 2 (b) against respective regional
percentage change in GDP. If the elasticity of either signal with respect to GDP is geographi-
cally constant across China, then one should observe an upward trend. This is dubious in either
plot. Finally, Henderson et al.’s framework does not accommodate multiple signals, nor is it clear
how to compute confidence intervals for the combined measure. Without such a measurement of
stochastic uncertainty, it is impossible to determine when a given combined measure and officially
reported output statistic are statistically distinct. Yet, that is the key question underlying the
validation of any reported output statistic.

This paper develops a methodology for combined measure construction designed to address
these particular concerns. First, it presents a structural model not dissimilar from the Henderson
et al. framework. The distinction is that this model — which ultimately has dynamic panel
data (DPD) representation — allows for systematic politically-motivated misreporting, without
its assumption. Then, the paper presents large T, small N results which may be applied to the
estimation of subsets of technologically similar regions. The nuisance parameters which arise
in the mapping from DPD to underlying structural parameters, including the imperative signal

elasticity, clarify the identifiability pitfalls researchers are prone to when they attempt to process



signals in reduced form frameworks. Finally, this paper also describes how to generalize this
estimator to multiple signals, and compute bootstrap confidence intervals for combined measures.
These error bands are also immediately interpretable as confidence intervals for output. Inasmuch,
they provide the analyst with a formal basis for determining which GDP statistics are statistically
improbable. Finally, though the concentration of this paper is China, the empirical methodology
developed herein is generally applicable to any signal or geography.

Ultimately, this new signal and methodology are applied Chinese data. Since the incentives
of local officials to misreport output quantities may increase during periods of economic turmoil,
the focus will be two recent trying periods: The Asian Financial Crisis of 1997-1999 and Great
Recession of 2007-2009. As part of this analysis, luminosity is reconsidered, along with several in-
dices of industrial production. The results indicate that luminosity is marginally preferred by the
data to all other alternatives for combined measure construction, including NOyx, in annual data.
This tends to buoy the usefulness of this signal in China, in contrast with Chen and Nordhaus’s
previous result. However, the primary disadvantages of luminosity are its low frequency avail-
_ ability and relatively short time dimension. Specifically, in order to conclude that any reported
output figure is statistically improbable, one must be able to show that it falls outside of the error
bands computed using a given signal. But in order to come to the strictly stronger conclusion
that this discrepancy is due to political aspirations, and not just a period of remarkable growth,
such an event minimally must occur at a politically opportune time: During or subsequent to a
crisis period. The substantive finding is that the restrictions imposed on estimation purely by
the dimensions of the luminosity panel make it difficult to utilize towards this particular ends.
In part due to the need to extend the N dimension utilized in estimation with small T, and in
part due to the relative smoothness of annual data, all annual signals are too uninformative to
be useful towards uncovering possible episodes of manipulation.

In contrast, when considering quarterly data, NOx emissions are however useful for pinpoint-
ing such instances of possible misreporting, and these inferences are corroborated by industrial
production indices. In particular, this paper considers the experience of four major cities during
the Great Recession period: Beijing, Tianjin, Shanghai, and Chongqing. A purely statistical
analysis of the data alone indicates that reported GDP figures for Beijing, Tianjin, and Shanghai

are supported by NOx emissions data, while reported GDP figures from Chongqing are not. In



fact, this is the time period during which Chongqing was under the stewardship of Bo Xilai, a
high-flying political official who gained prestige for outstanding GDP numbers, but was famously
deposed from power and sentenced to life imprisonment for corruption in 2013. GDP statistics
reported by Xilai’s administration were contemporaneously under scrutiny by his rivals; in the
words of his predecessor Wang Yang in 2009, “Some of our GDP figures sure look rosy.” (Liu,
2009). The conclusion of this analysis is therefore that NOx emissions are useful in separating
likely manipulated from accurate statistics.

This paper is structured as follows: Section 2 describes the construction of NOy series and
détaset under consideration more broadly. Section 3 develops the structural model to be utilized
in the remainder of the paper. Section 4 studies the identifiability of the structural parameters in
such models and introduces a new estimator for combined measures, substantiating its properties
by Monte Carlo experiment. Section 5 considers combined measures of output regionally in China

during crisis periods. Section 6 concludes.

2 Dataset

Nitrogen oxides (NOx) is a generic umbrella term encapsulating both nitric oxides (NO) and
nitrogen dioxides (NO3). Emissions of these particles are produced primarily during combustion,
and can be particularly pronounced in areas with large quantities of automobile traffic. Globally,
fuel oil is thought to contribute to roughly 50% of anthropogenic NOx emissions. Coal-fired
power plants are another major contributor. Aside from the burning of fossil fuels, NOx is also a
byproduct of biomass burning and fertilizer, which are also clearly indicative of production. But
NOy is also naturally occurring in soil and lightning, which therefore must be controlled for to
deduce anthropogenic emissions, the statistic of interest. In terms of externalities, NOx emissions
can cause smog and haze, as well as acid rain.

Anthropogenic emissions of NOx have surged in China over the past decades coinciding with
increased economic growth. Traditionally, NOx inventories are computed using what is known
as the bottom-up approach. This methodology utilizes known fuel consumption and emissions
factors, or, technology-dependent degrees of intensity with which fuel is converted into pollution.

But limited access to such data in China in particular, where these numbers are also part of local

10



Table 1: Remote instruments.

Instrument GOME SCIAMACHY GOME-2 OMI
Onboard satellite ERS-2 ENVISAT MetOP-A/B  EOS-Aura
Time sample 1996-2003 2002-2012 2007-present 2004-present
Resolution (km?) 30 x 60 30 x 60 40 x 80 13 x 24
Global coverage 6 days 6 days ~ 1 day 1 day

Notes: Available data sources for the retrieval of NOs; vertical column densities from space.

figureheads’ annual review, has led scientists to instead pursue what is known as the top-down
approach. Simply put, by this method one attempts to deduce emissions from satellite readings
(Wang et al., 2012). Specifically, satellite measurements of NO» vertical column densities (VCDs)
are used to constrain NOx emissions estimates via a chemical transport model relating stocks
(densities) to flows (emissions). Purely human-made emissions can be determined independently
via the transport model using surface activity data such as land cover, wild fire and meteorological
inputs to exclude natural causes.!! The satellite VCD readings of NO, utilized in this paper are
described by Table 1. Anthropogenic NOx emissions are deduced from these measurements using
the transport model methodology described in Zhang et al. (2007).

How accurate are these emissions readings? In fact, amongst all tropospheric species, NOx
is arguably the easiest to measure. The short atmospheric life of NOx means that densities are
closely correlated to emissions, and therefore may be used to accurately measure them independent
of wind or other obfuscation. In fact, NOs readings have been used to indirectly infer other more
difficult to measures species, such as carbon dioxide, over China (Berenzin et al., 2013). These
statistics are also clearly correlated with economic growth, a fact well known to the scientific
community. For example, it has been noted that the resurgence in Chinese growth following the
Global Financial Crisis is clearly evident in this data (Itahashi et al., 2014). Henceforth, referrals
to “NOx” or “NOx emissions” always mean anthropogenic NOx emissions.

Using these readings, two separate panels are created, described by Table 2. Both panels
correspond to the same set of N = 31 provinces, municipalities, and autonomous regions previ-

ously depicted in Figures 1 (b) and 2 (b). But the panels differ in the time 7' dimension. The

1 Because anthropogenic emissions of NOx are mainly attributed to the combustion of fossil fuels, energy consumption
can also be inferred directly using a known emissions factor.
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Table 2: Dataset.

Annual Quarterly
N = 31 regions 1993-2008 06Q1 - 13Q3
Units (T = 16) (T = 31)
Reported output GDP yuan v v
Satellite signals Luminosity watts / cm? v
NOx emissions molecules / cm? v v
Reported signals Freight traffic tons v
Electricity generation  kilowatt-hours v v
Cement production tons v v
Steel production tons Ve Ve
C'risis period 1997-9 2007-9

Notes: N = 31 provinces, municipalities (Beijing, Tianjin, Shanghai, Chongqing) and autonomous
regions (Guangxi, Inner Mongolia, Tibet, Ningxia, Xinjiang). *Tibet missing. **Tibet, Hainan,
Ningxia missing.

time periods selected purposefully subsume two economically challenging periods in China, dur-
ing which systematic manipulation of data at the sub-national level may be more likely. The
first time period, at the annual frequency from 1993-2008, includes the Asian Financial Crisis of
1997-1999. This annualized series is studied in part to serve as a control from which to compare
the efficacy of NOx versus nighttime luminosity, which is not available at higher frequency, in
combined measure construction. In addition, several reported indices of industrial production,
including two elements of the Li Keqiaﬁg Index (freight traffic and electricity gengration), are
included. The evolution of the annualized percentage change in these series for China as a whole
over this time period is depicted in Figure 4. Characteristically, all series fall during the Asian
Financial Crisis period of 1997-9, and recover however moderately thereafter.

The second time period, at the quarterly frequency from 2006 Q1 - 2013 Q3, includes the
Global Financial Crisis and ensuing Great Recession of 2007-2009. Freight traffic must also
be dropped, as it is not available at higher than annual frequency. Lin and McElroy (2011)
previously noted that NOy fell considerably during the 2007-9 period. Figure 7 depicts a similar
contemporary drop in the annualized percentage change in each series for China as a whole.
Importantly, we observe negative rates of change for NOx during the recession period, while GDP

approaches but never falls below a 0% rate of change.
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In Table 2, signals which are satellite-based versus reported by individual regions are differ-
entiated between. While it seems too speculative to hypothesize that such reported signals are
“reconciled” to reported GDP statistics, as discussed in the introduction, one may nonetheless
only conclude that this is necessarily not the case for satellite-based measures. For the remain-
der of the analysis, arguments are parsed so as to consider luminosity and NOy as the primary
signals of interest, whereas all remaining indices of industrial production are useful, though to be
interpreted with a dose of caution. In other words, results stemming from these signals should
be interpreted as primarily auxiliary in nature.

The key to utilizing any signal for proxy construction lies in identifying the elasticity of the
signal with respect to income, . If this signal is constant across regions n = 1,..., N and time

periods t =1,...,T, then the following equality will hold with error g,;:
%ASignal,, = 5 x %AOutput,,; + ent (2.1)

Let us consider the viability of the assumption that 8 is indeed constant across both n and ¢.
First, to establish that 5 is constant across ¢, one may exploit variability across n to estimate
£ within each period. In Figure 5, elasticities for both luminosity and NOyx are estimated for
each year in the annual sample. They are statistically indistinguishable from one another. In the
Online Appendix to the this paper, Appendix A, Figure A.3, the same is shown to hold for NOx
across each quarter in the quarterly sample. This suggests that 8 is indeed constant across the
time series dimension of the data for each area, and exploiting large T results to estimate 8 is
valid.

But is it also true that the estimated elasticity is stable across regions? Figure 6 depicts such
estimates for both luminosity and NOx in the annual sample. These estimates strongly suggests
that this latter assumption is not correct; estimated luminosity elasticities vary from ,73’\ = (.2 for
Beijing to B = 0.9 for Chongqing. A similar result is indicated for NOy in the quarterly sample
by Appendix Figure A.4. Intuitively, each area is economically distinct, and variety technologies
and utilized inputs result in distinct elasticities of each signal with respect to output. In this
sense, (3 is not constant across n, and exploiting large N results to estimate (2.1) is unlikely to

result in a consistent estimator.
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One may further corroborate this result by analyzing the time dimension cross-correlations
for each individual area. Appendix Table A .l lists correlations of reported GDP with each
signal, and each luminosity and NOyx emissions versus each other signal, for the annual sample.
Across regions, GDP is most correlated with luminosity, with NOx emissions a close second.
GDP, luminosity, and NOx are all least correlated with steel production. But these correlations
fluctuate greatly across regions; the correlation of GDP with luminosity is 0.81 for Hainan but
0 for Sichuan. Table A.2 presents the same, excluding luminosity and freight, for the quarterly
sample. Similar results hold, with GDP most correlated across regions with NOx and electricity
generation, and least correlated with concrete and steel production. Thus, in both samples there
is ample evidence that signal elasticities are not constant across regions in China, a result which
holds for all signals. Finally, due to the apparent low correlation of steel production with GDP,
and its multiple missing values, for the remainder of the paper it is omitted in favor of the
remaining signals.

Elasticities with respect to satellite-based signals seem to be remarkably stable across time,
suggesting large T results are useful. But on the other hand, the same can not necessarily be said
across areas within China, suggesting large N results are less so. The implications of this primitive
analysis of the data are twofold. First, the DMSP-OLS luminosity panel is currently restricted to
a 1992-2013 time sample, whereas monthly data for NOx is available at longer horizon and higher
frequency (Table 1). In situations such as these where it is not appropriate to exploit large N
results, NOx emissions may be useful in comparison, a hypothesis yet to be tested. Second, the
fact that the time series dimension of the data is to be exploited calls for a compatible statistical
methodology, which does not exist. In order to develop such a methodology, we must first develop
a model consistent with the type of systematic data manipulation believed to possibly exist. The
next section removes itself from the specific case of China and NOx to present such a generally

applicable framework.

3 Model

Combined measures of economic growth are composite series of conventional output data and

other proxies for growth. Such proxies are created from sub jectively chosen signals using a sta-
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tistical procedure. While these signals contain only indirect information about economic activity,
that information is deemed relatively reliable. Therefore, combined measures are forwarded as
a useful alternative measure of economic growth when conventional output data alone may be
erroneous.

This section offers refinements in the arena of combined measure construction pioneered by
Henderson et al. (2012). The purpose of this exercise will be to develop a framework for growth
measurement which is applicable to areas lacking developed statistical agencies, as those authors
assumed, but also other areas where output may be misreported in a purposeful way. First, a
model is proposed which incorporates serially correlated unobservable states. This generalization
allows for the possibility that output data is systematically manipulated, but imposes no such
restriction. Then, it is demonstrated that a combined measure remains available in this augmented
setting. Finally, this setup is shown to be immediately generalizable to allow for arbitrarily many
signals. This allows one to consider not only the unilateral information value of individual signals,

but also the joint universe of possibilities.

3.1 Structural equations

. Let Y, be the level of latent, or otherwise unknown, unobserved, or poorly measured output for
geographical area n = 1,..., N in time period t = 1,...,7T. Generally, n may correspond to any
arbitrary unit of area, ranging from an entire country, to a mesh grid of the finest resolution. ¢
typically means years or quarters; higher frequency output data is not usually available or studied
even for sovereignties with very accurate statistical records. Henceforth, take the convention of
exponent-* to mean variables which are not directly unobservable.

Say ¥r; = 100 x AlnY; ~ %AY}, evolves according to an AR(1) process ¥, = an+ py¥ni_1 -+
e, for macroeconomic shock €¥,. «j, are fixed effects attributable to either potential output
for area n, or average mismeasurement over the time sample under consideration. Then the

percentage change less-means vy, = g+, — E(y},) follows
Ynt = PyYni—1 T Em (3.1)
Appendix B provides an example of a simple but ubiquitous dynamic stochastic general equilib-
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rium model which corroborates this reduced form assumption. The following standard regular-
ity conditions are also assumed: 0 < [py| < 1, &), ~ IWN(0,07) independent white noise for
0 < oy < 00, and {e¥,} has finite fourth moments. The shocks are therefore not serially correlated.
However, they are not necessarily uncorrelated across areas, contemporaneously. This allows for
areas to share identical shocks, but at the same time does not impose any such restriction.

(3.1) is unique to the model specification of this paper, versus Henderson et al.’s setup. It
is included primarily for reasons pertaining to identifiability which will become evident in the
following section. However, the next three equations are largely consistent. Say that that the
latent or otherwise only indirectly observable value of a signal, S};, is related to latent output
by the relation Sy, = Y:tﬂ . Thus, f is the elasticity of the signal with respect to income. Define
5t =100 x AIn S}, and si;, = sk, — E(5h,). s), are as such differenced from their own fixed
effects, which, for example, may arise from an attempt to “reconcile” such signals to output.
Specifically, s, is related to y;; by

St = BYns (3.2)

B # 0 by assumption. This requires that the signal is in a colloquial sense, relevant. The ob-
served or otherwise scientifically recorded value of the signal is related to this latent value with
error. For example, a known issue pertaining to luminosity data is that phantom readings may
occur over oceans near coastal settlements. Henceforth, this paper adopts the notation that vari-
ables without-* (s,;) represent the observable datum corresponding to each with-* unobservable
counterpart (sk;).

Snt = S:Lt -+ E,s.Lt (33)

g8, ~ IWN(0,02) for 0 < ¢ < 00, {&,} has finite fourth moments, and {e$,} is independent of
{e¥.}. In words, signal measurement error is not serially correlated, though possibly correlated
across areas. Furthermore, it is uncorrelated from macroeconomic shocks. Such assumptions
require little defense. They merely require that scientific or other exogenous error in measuring
the signal is idiosyncratic, and unrelated to business cycle fluctuations. In other words, taken
together (3.2) and (3.3) implicitly define what types of data are good signals: They must be
at once related to economic activity in a known and useful way, and measurement error must

not suffer from endogeneity. The analogy to valid instruments is immediate. If either of these
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assumptions is violated, changes in y,, may not be reflected in the signal, which would in this
case become unreliable.
The motivation of combined measure construction is that traditionally reported observable

output data y,; is erroneous.

Ynt = Ynt + Ung (3:4)

Unlike signal measurement error &5, however, output measurement error w), is allowed to be
serially correlated.

Upt = Pullpy_1 + En (3.5)

0 <|pul < 1,4 ~IWN(0,02) for 0 < oy, < 00, {€%,} has finite fourth moments, and {e%,} is
independent of {e5,} and {e¥,}. In words, %, may be correlated across areas, though not time.
It is not correlated with either macroeconomic shocks, or signal measurement error.

Allowing for u}, to be serially correlated is the second significant way in which this paper
departs from the assumptions of Henderson et al. The purpose of this generalization is both
statistical and structural. From a strictly statistical perspective, the basic model (3.1) and (3.2),
while theoretically elegant, can for the same reason not be expected to account for all comovements
in the data. Serial correlation in measurement error enables the model to more closely match
observed experience, without confounding parsimony in specification. This approach has a long
tradition in economic modeling (Sargent, 1989). Finally, from this perspective {e%,} is defined
outside the scope of the present model, such as from an omitted structural shock. This supports
its independence from {e$,} and {%,}.

From a more substantive structural perspective, since u,, is persistent, its process also allows
for systematic human-related intervention in data reporting. Consider the situation in which
an authority for area n designates an output target.!?> This target is reasonably derived from
macroeconomic fundamentals about what rule of motion output has: 7, = pyTni—1 + szt + ey
and e, ~ IWN(0,02) for 0 < 0, < co. In words, the target, in units percentage change less-
means, follows the same rule of motion as output, with some error. This would reflect the will
of an authority with knowledge about the true structure of the economy, but with expectations

about the effectiveness of policies outside of the scope of (3.1). In opposition or party to this

12¥With respect to China, this “authority” is equivalent to the nationally governing Communist Party.
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authority, assume that there is an output reporter who manipulates output data y,¢ exactly to
the extent such that it achieves this target in each period: uf, = T — 3.3 Substituting yields
Upy = PyUmy_q +€hy. This is identically the assumed rule of motion for reporting error (3.5) under
the cross-equation restrictions p, = p, and €%, = e};. From this perspective, {e};} is purely
institutional in nature, supporting its independence from {e3,} and {e’,}.

In sum, if one had reason to believe: That there is an output target which is in part based
upon the economy’s true output evolution; that true output were persistent; and that reporters
of output were incentivized to meet this target, then these points would logically require that u},
were persistent. Thus (3.1) and (3.5) jointly allow the model to be general enough to capture a
range of pertinent political behavior not allowable under classical measurement error. An example
is the endogenized targeting-misreporting framework just described. Yet, the model at the same
time takes no stance as to whether the source of persistence in u,; is so-called statistical or

structural, as defined above. Thus, it is appropriate in either case.

3.2 Combined measure

(3.1)-(3.5) encapsulate the model. In total, there are six structural parameters, collected in

621 = (ﬁ,U,py,O'y,pu,O'u)l (36)

Signal OQutput Error

The structural parameters may be partitioned into two which are signal-specific, and four which
are not. Of those which are not, two depend upon the y-evolution of latent output, and two upon
the u-evolution of output measurement error. The identifiability of § and a consistent estimator )
will be discussed in the following section. Given any consistent estimator, and known relationship
between signal and latent output (3.2) and (3.3), one may construct a proxy for growth. It is the

linear projection

2 = (1/B) 5w (3.7)

The proxy Z,; may be used to construct a composite estimate of output. Such a combined measure

is the weighted average Tnt = (1 — @)ynt + dzn:. Creating an optimal combined measure Zp; means

13%ith respect to China, this “reporter” is equivalent to a provincial or other subnational level figurehead who vies
for advancement.
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choosing the proxy loading ¢ accordingly. The appropriate choice is a consistent estimator (Z for

¢ which minimizes the mean squared error of ;. The mean squared error is
o~ * * ; Oy
V(#) = B[l = 0)ynt + 63 —yul” = B = Supy + (9/B)erd” = 1 =0V’ 1 5 + 5
u

The first order condition of V(¢) evaluated at the estimator is

~9 o
Ty _22 82

V'(@)|,_=0=—2(1- 5)1 R

Simply rearranging yields the optimal loading.

~9 ~2 ~9
~_ O 6., .
- /(224 5) (&)

From this, we may finally define the optimal combined measure of output.

Tpt = (1 — (E)ynt + 3% (3.9)

a € [0,1] is required of its definition as a weighting. A necessary and sufficient condition is
|pu| € [0,1]. In the extreme case that p, = 0 and output measurement error is not serially
correlated, both traditional output and the signal are potentially useful. When this is so, the
magnitude of the loading depends upon (1) the elasticity of the signal with respect to output,
and (2) the relative magnitudes of measurement errors. Conversely, in the extreme case that
P = 1 and output measurement error is a random walk, then reported data is not reliable, and the
combined measure is identically the proxy. The previous assumptions restrict |5,| = |puo| € (0,1)
and B 2, By # 0 for consistent estimators. 2, denotes convergence in probability and subscript-
0 denotes population value. In any such admissible case, gg LS ¢o € (0,1) and the economic

implication is some nontrivial convex combination of the two extreme outcomes.

3.3 Multiple signals

The analysis thus far has concerned itself with a lone signal sp:. As many distinct combined

measures may be computed as there are signals available. However, should there in fact be many
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signals available, one may naturally wish to instead compute a combined measure from all signals,
jointly. Let us assume that there are 1 = 1,...,5 signals under consideration. In terms of these,

define the following vectors of measured signals, true values, and errors.

St = Jsml1) su(S)] st = [0 . sn®)] =l - e,(9)]

Henceforth, parenthetic (i) denotes parameters and variables which are signal i-specific. The

system equivalent of the signal measurement equation (3.3) is again written,
Spt = S:Lt + €7S,Zt (310)

but now, spt, sns, and 5, are vectors. In the case of a lone signal S = 1, there are 6 structural
parameters in 6 (3.6). The first two (3, o) are signal-dependent, while the latter four (py, oy, pu, ou)
are signal-independent. The system equivalent has S+S(5+1)/2 structural parameters which are
signal-dependent for each ¢ = 1,...,5, while the latter four are mutual amongst signals. Thus,

there are ng = S+ S(S + 1)/2 + 4 total structural parameters for S > 1 signals.

—_ L !
n90><1— (670' :Py:ayapuao'u) (3~11)
S Signals Qutput Error
! s Sl
— = = > =
8 s ... 89) g5l = VRE) L =chol(®) S = Bleket)

vech(-) is the operator which selects the S(S + 1)/2 unique elements on and below the principal
diagonal. chol(-) is the lower-left Cholesky decomposition so that LL' = 3. X is allowed to
have possibly nonzero off-diagonal elements for the fact that signals may be “reconciled” to one
another. Explicitly, if certain candidate signals are manipulated in tandem to veil output data
manipulation, then their measurement errors should be expected to be mutually correlated. But
at the same time, that these correlations are zero is simply a special case, and such speculations
need not be entertained. Finally, note that in the special case that S = 1, ng = 6, and we have

the previous lone signal model setup.
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Given a consistent estimator 8, we also have S independent proxies for economic growth.

2 = diag(B) Lsne (3.12)
Sx1

Recall, the individual elasticities are nonzero by assumption of the signals’ relevance. Therefore,
diag(E), the S x 5 square diagonal matrix with the elements of 3 in order on its principal diagonal,
is always invertible.

Finally, we wish to utilize these S proxies Z,; to construct a joint composite estimate of growth.
Such a joint combined measure is the weighted average zn; = (1 — ¢'15)ynt + &'z Where ¢ is an
S x 1 vector of loadings and 1g is an S x 1 vector of 1’s. Creating an optimal combined measure
Tpn: means choosing the proxy loadings ¢ accordingly. The appropfiate choice is a consistent

estimator ¢ for ¢ which minimizes the mean squared error of x,;. The mean squared error is

2 -~ -~
V()= E [(1 - ¢'18)gme + ¢'Ze —yna]” = (1 - ¢'15)° "“pz + ¢'diag(8) ™ Ddiag() ¢

The first order condition of V(¢) evaluated at the estimator is

av = %i_ ¢ 23ding(F)- Sding(F
D) = 0pus = —201 - F1)15 2 + 25 ding(B)~Siag(B)
¢ |z 1—pg
1xS

Simply rearranging yields the optimal loadings.

~9 -1 ~9

b = [131'51 Tu 1 diag(B)"'Sdiag(B)'| x s faz (3.13)
Sx1 - Pu ) .

q?i\’ 1s € [0,1] is required of ¢’s definition as a weighting. A necessary and sufficient condition, as in
the lone signal case, is |py| € [0, 1]. Intuitively, when S = 1, ¢ reduces to the lone signal weighting
(3.8). However, (3.13) is not equivalent to a vector of (3.8) computed signal-by-signal for S > 1.
In that case QZ/ lg € [0,1] is not generally satisfied. The optimal multiple signal combined measure
is

Tt = (1= 318)ynt + & Zne (3.14)

21



4 Methodology

Aside from a generalization to multiple signals, the construction of combined measures described
in the previous section is in many ways similar to the treatment of Henderson et al. (2012). The
lynchpin in both cases is the estimation of the loadings ¢. However, there are subtle practical
points yet to be considered. For example, a primitive assumption underlying the existence of a
consistent estimator g/z; is that all elements of 8§ are identifiable. In Henderson et al., the analogous
parameter to o, — the variability of output reporting error — is not identifiable. The authors fix
this parameter to a constant, parameterizing the value by-area using A-through-D country data
quality grades provided in the Penn World Tables.

But fixing this parameter produces bias. At hand is the fact that conditioning is not a
good practice when the conditioning information — like the coarse Penn World Table rankings in
particular ~ is imprecise. Let us consider a concrete example. Say that Country A is characterized
by population values 8 = 1, g = 10/9, pyo = 1/10, and oy = 1 for some lone signal. Then
¢o = 1/2. But also say that Country A has received the same data quality grade as Country B,
which has oyg = 1/2 in population. Inherently, categorical rankings provide only such blunted
characterizations of true data quality, regardless of the realized magnitude of differences within-
bins. If o, is fixed to &, = 1/2 for both Country A and B, estimating ¢ conditionally for Country
A gives $|Eu 21 /3. The proxy is asymptotically underweighted, despite being entirely consistent
with categorical rankings. Unless all countries within each grade have exactly the same population
values, an assumption which is plainly unreasonable, then such unquantifiable biases are a forgone
conclusion.

Moreover, existing panel estimates of combined measures have primarily exploited a large N
cross sectional dimension. This focus is the result of the small time samples T previously under
consideration. For example, the DMSP-OLS luminosity panel is currently only annual from 1992
to 2013, making time series analysis for single areas difficult. Nonetheless, as solidified by the
analysis in Section 2, inevitable locational heterogeneity in production technology and input mix
imply that the elasticity S should not be expected to be the same from country to country, or even
within. In this case, overzealously pooled estimators are not consistent for large N, regardless.

Given that the time series dimension available for NOx and other relevant signals are considerably
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more generous, the applicability of fixed N large T" asymptotics is in that context more promising.
But this requires the development of a new estimator, and associated proofs of large T' consistency
and asymptotic normality.

This section first establishes that the model observables have “structural” dynamic panel data
representation. Amongst other ramifications, this structure implies that the errors are serially cor-
related. Consequently, an instrumental variables generalization of the within estimator typically
utilized to estimate dynamic panel models becomes useful. Inferring latent growth, however, also
requires a second step of recovering the structural parameters from these estimates. The nuisance
parameters which arise in this nonlinear mapping elucidate why any attempt to decipher latent
growth from purely linear inferential techniques is likely to yield misleading conclusions. Finally,
this ultimately computationally efficient estimator also expedites the bootstrapping of small T
sample bias correction, confidence intervals, Wald statistics, and error bands for the combined
measure. These statistics help alleviate biases intrinsic to dynamic panel data estimation when
N approaches oo faster than 7', and sample biases incurred for fixed N small 7. Inasmuch, they

are pivotal to subsequent empirical analysis.

4.1 Identification and estimation of reduced form

The model (3.1)-(3.5) contains both observable and unobservable variables, implying state space
representation when utilizing any lone signal. Proposition 1, proven in Appendix C, establishes
that this state space also yields parsimonious representation for the observables given any S > 1

set of signals.

Proposition 1. (Reduced Form Representation.) The observables have the representation

Ynt = Xnt\y + Vnt (4.1)

n

!
for Xny = (V! 1 ®Igy1) R is (S+1) x (S +2), Yoy = [ym SQJ is (S+1)x 1, R an (S +
1)2 x (S + 2)-dimensional zero-one selection matriz, ¥ a (S + 2) x 1 vector function of both the

structural parameters 8 and S nuisance parameters contained in A which sum to 1

v = [p, s M' (4.2)
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VN = (=) [2 - 2] (43)

!
S§1=[,\1 ,\S]; Nlg =1 (4.4)

and Vot a (S +1) x 1 vector MA(1) error with variance-covariance matriz
QO;\) = E(VaiV) (4.5)

for Q a nonlinear but closed form function of 6 and A.

Equation (4.1) is interpretable from the time series dimension as by-region n restricted
VARMA(1,1) representation. Exclusion restrictions are embodied in R and cross-equation re-
strictions in ¥ and Q. This representation is useful in that it is stated entirely independently of
the unobserved states. Yet, serial correlation in the errors {Vy;} is directly attributable to the
model’s inherent dependence on the unknown status of output and reporting error. The existence
of such latent states precludes finite order VAR representation, for example, in all but special
circumstances (Ravenna, 2007).

From a panel perspective, however, this representation is more naturally interpreted as a gen-
eralization of dynamic panel data (DPD). Specifically, this is vector DPD with serially correlated
errors and structurally founded parametric restrictions. Aside from vector notation, structural
DPD has several more substantive distinguishing characteristics from the more familiar DPD.
First, the object of interest from the perspective of identification, estimation, and inference is the
structural parameters, not the reduced form. However, it is only in the case that S = 1 when
A1 = 1 is known a-priori. So, any attempt to identify the structural parameters from multiple
signals without accounting for A will always prove fruitless. Second, the fact that {V,,;} is serially
correlated means that commonly utilized DPD estimators which assume otherwise will not yield
consistent estimates for ¥ itself, regardless. Third, the application of interest suggests large-T
asymptotic results are at least as important as large-N results, since locational heterogeneity in
production technology will generally imply distinct elasticities of a given signal with respect to
income. This hinders the applicability of GMM estimators which presume N grows faster than 7'
(Holtz-Eakin et al., 1988; Arellano and Bond, 1991), or bias-correction methodologies which rely
on large N and T (Hahn and Kuersteiner, 2002; Bai, 2009).
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So, while we are ultimately interested in estimation and inference for 6, such an analysis
remains vet impossible unless it is first possible to identify ¥ and 2. Furthermore, estimators
which seek to recover 8 directly, such as maximum likelihood, may be numerically cumbersome,
a feature which will subsequently prove undesirable with respect to bootstrap statistics. These
facts jointly suggest that the most pragmatic approach to addressing the stated concerns with
respect to structural DPD is to first consider the reduced form parameters ¥ and 2 as estimable
parameters unto themselves. Then, the more intricate problem of recovering 6 may be considered.
Proposition 2, proven in Appendix D, extends the familiar within (covariance) estimators from

the DPD setting to the structural DPD case.

Proposition 2. (Estimation of Reduced Form.) The instrumental variables estimator

-1

N N
T = Z'X 7'y 4.6
(S+2)x1 7; nen ; non (4.6)
~ o~ ~ ! = —~ o~ !
Vo =9 o P Bn =Ry o Ripy]
T(S+1)x1 n3 nT+2 T(S+1)%(S+2) n3 nT+2
~ ! ~ ~
Zo  =|Rly . Ripy|  Rw= @@ IR
T(S+1)%(S+2) n2 nT+1 nt = (Yot +)

where {f/nt} is the sample analogue to {Yy:}, is consistent for large T regardless of N
U5 W) as T 0 (4.7)
and asymptotically normal with bias depending on the relative rates of increase of T and N
VIN(T — To) & NB(T), Avar(T)) (4.8)

b(T) — 0 necessarily if N fized T — o0, but possibly not if both N and T are increasing. Consis-

tent estimators for Avar(¥) and Q are

~1 N —1
Avar(D) = R (fzy ® ﬁ) R|(TN)Y X2,
n=1

N
(TN 2 X,
n=1
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' N T
Sy = (TN S Y, Q=@N> S Vv,

n=1 t=1 n=1 t=3

for Y//\'nt = ?nt - )/{:nt(f/ the residuals from the estimator 7.

Proposition 2 represents an instrumental variables extension of Theorem 1 of Alvarez and
Arellano (2003), which investigates the within estimation of scalar DPD models with indepen-
dent errors. The estimation of ¥ here is possible despite serial correlation in érrors simply by
using lagged observables as instruments, similarly to Anderson and Hsiao (1981). The first lag is
considered, as it is the valid instrument which results in the largest time sample. The inciden-
tal parameter bias b(7) which arises in the asymptotic distribution is an artifact of the within
transformation necessary to obtain {?nt}, as the data contain fixed effects (Neyman and Scott,
1948; Nickell, 1981). This bias may not converge to zero if N is not fixed. Yet, it will necessarily

converge to zero for fixed N large T

4.2 Identification and estimation of structural parameters

When attempting to deduce true growth from signals, the natural inclination of an analyst may
be to include as many signals as possible in a simple reduced form linear analysis. For example,
in the form of a vector autoregression. However, Proposition 1 implies that no linear inferential
approach based on multiple signals necessarily identifies the elasticities ',8 necessary to make
inferences about the unobserved state y%,. This is due to the existence of nuisance parameters
{\;} when S > 1. Specifically, one must identify nuisance parameters separately of elasticities.
The only exception to this rule is when there is but S = 1 signal, as in Henderson et al’s
luminosity study.

With this in mind, one may now consider the necessarily nonlinear problem of identification
and estimation of # when § > 1 given the estimators and restrictions \Tl, ﬁ, and Nlg = 1.
The easiest way to begin any nonlinear identification exercise is to verify that necessary order
conditions are satisfied. Specifically, in order to separately identify 6 and A, there must be at

least as much information in the ng + .5 vector of reduced form restrictions, 7.

!
= | ) ! ! 4.10
(n9+7%)x1 [)\ 1ls ¥’ vech(Q) ] (4.10)
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Table 3: Exact identification of structural € and nuisance A parameters.

A B opy pu Oy Oy o Total
Restriction  No. Elements S S 1 1 1 1 S(S+1)/2 ng+ S
Nlg 1 v
v S+2 v v VY
vech(Q) (S+1)(S+2)/2 v v v v Vv V v
Total ng + .5

One way to cogently assess the dimension of either set of parameters is to enumerate them in a
tableau. Such an analysis is presented in Table 3. As described by this table, there are exactly
as many structural and nuisance parameters as there are restrictions to be exploited for their
identification. Therefore, the order condition is just satisfied for any S > 1. Appendix E.1
establishes that when S = 1, the mapping 7 is in fact simple enough to invert analytically, which
inasmuch guarantees 8 is globally identified. This feature also means that an efficient indirect

least squares estimator for § may be written in terms of the inverse mapping.
~ LT SR
S=1: 0=7" ([\IJ’ vech(Q)'] > (4.11)

When S > 1, m becomes too complicated to invert analytically. But Appendix E.1 also

establishes that one may still compute analytically the square Jacobian

JoN =9 (4.12)

(no+S)x(ne+S) 0 [9' ,\']
As will be substantiated numerically in the following subsection, this matrix is typically full
column rank. This ensures point local identifiability of the structural parameters (Rothenberg
(1971)). Furthermore, despite the fact that m~! is infeasible for S > 1, it is yet possible to

compute an asymptotically efficient 2-step estimator on the basis of the Jacobian’s inverse.
1 3\\*,15
= | | +J@E ) T |- wEr (4.13)
vech(Q) vech(£2(6*, i)

S>1:
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where §* and \* are the signal-by-signal estimators for § and A constructed from each individual
signal’s consistent estimator (4.11). Appendix E.2 pedantically details the steps to be followed in
constructing this two-step estimator and establishes its asymptotic equivalence to the infeasible

efficient estimator based on inverting the mapping 7 directly.

4.3 Inference

When S = 1, ¥ is 3-dimensional and depends upon three structural parameters — f, p,, and
pu — and no nuisance parameters. As a result, confidence intervals for the indirect least squares
estimator (4.11) for these parameters can easily be computed using @(@) by the delta method.
Yet, in the more general case one wishes to compute confidence intervals for the entire vector of
structural parameters 8, or if S > 1, such familiar results are not applicable. This is due to the
fact that such statistics would also depend upon the non-Gaussian asymptotic distribution of Q.
Moreover, analytical corrections for the incidental parameter bias b(T) do not exist.

The fact that 9 is a computationally efficient estimator for all S > 1 does however make
bootstrapping such statistics feasible. Recall, there is inherently bias in the DPD estimates if N
is increasing with 7. While there is no bias for fixed N large T, there will also likely be bias

for fixed N small 7. In order to come to grips with the magnitude of these biases, consider the

following values for a hypothetical model with S = 1:
B=3, o=1e—3, py=07, oy=1e—-3, p, =05, o, =1e~—3. (4.14)

Using (4.14) as data-generating values, the bias in the indirect least squares estimator for ¢
with variable N and T is computed by Monte Carlo experiment. The results are summarized
by Table 4. Recall, the annual sample utilized in this paper has N = 31 and T' = 16 while
the quarterly sample has T = 31. Samples with cross-sectional dimension of N = 10 and lower
are investigated in these Monte Carlo experiments, since as discussed, it is desirable to partition
provinces, municipalities, and autonomous regions into as many distinct tranches as possible. In
the entire range of potential panel dimensions to be utilized, ,/B\ is consistently downward-biased

by approximately 10% of its true value. So, the suggestion adhered to henceforth is to utilize the
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Table 4: Small sample bias.

N=1 N=3 N=6 N =10
T=15 T=30|T=15 T=30|T=15 T=30|T=15 T =30
B 026 -035 | -037 -041 | -039 -0.36 | -0.39  -0.33
o 0 0 0 0 0 0 0 0
p, -0.08  -0.03 0 0 0 0 0 0
o, 0 0 0 0 0 0 0 0
pu  -0.25  -0.08 | -0.08 -0.07 | -007 -0.06 | -0.06 -0.04
o 0 0 0 0 0 0 0 0
¢ 044  -007 | -044 -016 | -0.16 -0.16 | -0.17  -0.15

bias-corrected estimator,

ﬂz“_iBaw
0" =20 - - ; (4.15)
with bootstrap draws {6(®)} (see Appendix F).

Next, we wish to numerically examine the coverage probabilities of either asymptotic or boot-
strap confidence intervals for the bias corrected estimator * when S = 1. Using again (4.14) as
data-generating values and S = 1, asymptotic 95% confidence intervals are computed for 3, py,
and p,, over a range of N and T in the top pane of Table 5. In all cases, 3 is significantly under-
covered. It is impossible to compute asymptotic confidence intervals for the remaining structural
parameters, or the weighting ¢, with standard inferential tools.

In order to investigate the possibility that bootstrap confidence intervals perform better,
Monte Carlo experiments to compute the bootstrap confidence interval's coverage probability
are carried out using the methodology described by Horowitz (2001).}* Results are described
in the bottom pane of Table 5. The results indicate that for time series samples of T = 15,
roughly the magnitude considered in the annual sample in this paper, a cross sectional sample
of minimally N = 10 is required to obtain correct coverage probabilities for all parameters of
interest. However, if the time series dimension is expanded to T = 30, roughly the magnitude
considered in the quarterly sample in this paper, a cross sectional sample of just N = 6 is required

to obtain correct coverage. In either case, these results indicate that bootstrap confidence intervals

4See Appendix F for the computation of confidence intervals. Following Horowitz’s design, for each of 1000+ Monte
Carlo draws, a bootstrap confidence interval, requiring another 1000+ draws, is computed. The dimensionality of this
computation makes it intensive. Code was parallelized across 40 CPUs and took several hours to compile.
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Table 5: Coverage probability of 95% confidence interval.

Asymptotic.
N=1 N=3 N=6 N =10
T=15 T=30|T=15 T=30|T=15 T=30|T=15 T=30
B 11 6 4 2 1 1 1 1
Py 92 93 91 92 85 88 80 79
Pu 93 94 94 93 87 91 84 89
Bootstrap.
N=1 N = N=6 N =10
T=15 T=30|T=15 T=30|T=15 T=30"|T=15* T =30"
B 95 97 99 98 98 97 96 95
o 96 98 98 98 98 98 98 98
Py 92 94 96 98 99 99 99 99
oy 96 98 99 98 98 96 97 96
Pu 67 71 7 87 87 94 93 97
Oy 91 92 92 95 96 96 96 98
0] 92 93 93 96 95 95 95 96

Notes: * indicates correct coverage probability.

are useful in this application; they not only have good coverage probabilities, but may be used
to compute uncertainty for all parameters of interest. In the ensuing empirical analysis, these
results are used to inform bin sizes for estimation, in which we wish to keep N as small as pbssible
for each T'.

Finally, Appendix F also details the computation of percentile confidence interval for the
computed combined measure series {Zp:} itself. These are henceforth known as error bands.
The key economic question of this paper is whether officially reported output statistics may be
validated using other signals of growth. Naturally, in any given sample, the combined measure Tp;
and reported figure y,; may differ. Is this evidence that officially reported statistics may not be
validated? No. Not just the combined measure, but its entire sampling distribution, is the object
of interest: Is a given purported difference between the combined measure and reported output,
Znt — Ynt, Statistically significant? Level « error bands provide a range in which actual output
figures are likely to lie, on the basis of signals of economic growth. If reported GDP numbers fall

outside of these bands, they may be regarded as statistically improbable. Precisely, thereisa 1—o
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probability that this conclusion is incorrect, and that reported figures are indeed representative
of true growth (Type I error). Error bands are thereby fundamental to understanding when
reported output figures are feasible. They are the main statistical object of interest for drawing

substantive economic conclusions in the following section.

5 Results

The analysis centers on two trying periods in the recent economic history of China: The Asian
Financial Crisis period of 1997-1999, and the Global Financial Crisis and Great Recession period
of 2007-2009. The central question is whether signals of economic growth ~ such as luminosity,
NOy emissions, or indices of industrial production — may be used to validate officially reported
figures at the subnational level during either of these periods. In order to critically consider this
question, this section applies the model described in Section 3 and methodology developed in

Section 4 to the datasets described in Section 2.

5.1 The Asian Financial Crisis

Recalling the discussion of Section 2, the annualized data set, spanning from 1993-2008 (T = 16)
and across all N = 31 regions, is utilized. The previous analysis has indicated that pooling the
estimates across all regions is likely to lead to misleading conclusions; ideally, estimates would
be computed on a region-by-region basis. But at the same time, the Monte Carlo experiment
summarized by Table 5 indicates that no cross sectional dimension less than N = 10 is likely to
lead to correct coverage probabilities with this time dimension.

For this reason, the N = 31 subnational regions are to be separated into two groups of 10 and
one of 11 before estimation. For each of the three group-dependent estimators to be consistent, the
structural parameters § must be in common of all regions within each bin. As an objective means
of choosing these groupings, one may utilize the preliminary by-region annual NOx emissions
estimated elasticities E listed in Figure 6 to provide an ordering. The groupings implied by these
preliminary estimates are depicted in Figure 8 (a); Group 1 (N = 10) contains highest elasticities,
Group 3 (N = 10) contains smallest elasticities, and Group 2 (N = 11) contains mid-range. Note,

there is no obvious geographic or economic dependence amongst members in each group, outside
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of the elasticity estimate. Similar observations hold were we to use the preliminary by-region
annual luminosity estimated elasticities B also listed in Figure 6.

Using these groupings, bias-corrected estimates for the structural parameters 6 and weightings
¢ are computed. Recall, ¢ is in some sense the primary parameter of interest, since larger ¢
estimates indicate the given proxy is useful in combined measure construction. Signal-by-signal
estimates for ¢ with 95% bootstrap confidence intervals are listed in Table 6 (S = 1 columns).
Estimates for each structural parameter in 6 along with confidence intervals are listed in Appendix
Tables A.3-A.4. Relatively large confidence intervals in all cases disallow us from attributing
statistical significance to ¢ or the elasticity £ for either luminosity or NOy emissions. But can we
take a stance on which signal marginally preferred by the data? Table 6 also presents estimates
using all signals, jointly, with confidence intervals not reported (S = 5 columns).!®> There are two
important observations. First, the data tend to prefer luminosity in all groups, with a weighting
as high as 1 in Group 3. This implies that the luminosity data is certainly useful on an annualized
basis. Second, summing up weighing adds to almost identically 1 in all cases. In other words,
even reported output always receives a weighting of zero. It seems that utilizing all signals jointly
may tend drown out the information contained in reported figures.

The ultimate purpose of this analysis is to determine which officially reported output data are
supported by other signals of growth. Bootstrap error bands, described in Section 4.3 and com-
puted using any signal or signals, provide a formal means for determining this. Figure 9 depicts
the error bands computed by-region using the perviously described estimates using luminosity
alone. Note, in several instances reported output (black line) escapes the luminosity-based error
band (pink shading). This indicates that one may reject the null hypothesis that reported output
data is consistent with remotely measured luminosity readings during the given period, with a
5% chance that this rejection is incorrect.

But can we also reasonably conclude that these discrepancies are due to politically motivated
misreporting in all instances? It seems that the only reasonable answer here is no. Consider that
the validity of reported output is rejected on the basis of luminosity data before the financial crisis

period (Beijing, Tianjin, and others). This period, 1993-1997, was in fact a period of fantastic

BConfidence intervals for S > 1 can be computed using a similar bootstrap methodology as for S = 1. However, since
the use of the multiple signal estimator is to judge which signals are comparatively favored by the data, these are not
computed. In addition, the Jacobian J is full column rank, ensuring local identification of the structural parameters.
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Table 6: Estimates: Annual sample, 1993-2008.

Group 1 (N =10) Group 2 (N =11) Group 3 (N =10) Pooled (N = 31)
S=1 S=5 S=1 S=5 S=1 S=5 S=1 S=5

¢r  -0.40 0.81 0.01 0.99 0.81 1 0.27 1
(-0.81,1.23) (-1.82,1.91) (-0.14,2.38) (-0.38,1.92)

on  -0.69 Ge-4 -1.48 -le-3 0.22 0 -0.60 0
(-1.00,0.81) (-2.16,-0.06) (-0.19,1.87) (-0.94,1.03)

¢p 097 0.18 1.24% 2e-3 -0.79 0 -0.97 0
(0.97,1.02) (0.78,2.80) (-2.03,2.26) (-1.59,0.68)

ép  0.62* de-4 -0.80 0 -1.19 0 -0.76 0
(0.07,1.98) (-1.28,0.64) (-2.29,0.37) (-1.23,0.76)

6c  1.18* 0.01 0.95% 2e-4 1.04% 0 1.05* 0
(0.82,2.77) (0.93,1.16) (1.03,1.07) (0.87,1.82)

Notes: * Significance at 95% confidence level (confidence interval). Groupings are described by Figure
8 (a). L: Luminosity. N: NOyx emissions. F: Freight volume. E: Electricity generation. C: Cement
production.

growth in the Chinese economy. Rather than misreporting, what we are more likely witnessing
is few years of particularly rapid decline leading into the recessionary period. In other Words,
the variation in the remainder of this annual data sample is not sufficient enough to allow one
to avoid Type I errors in the beginning of the sample. As additional evidence of this concern,
note that reported output figures appear to be too low during the crisis period in several regions
(Tianjin, Hebei, and others). It seems highly unlikely that regional officials would report output
figures which were too low during a crisis period. In other words, the statistical inference implied
by this aberration is not consistent with our economic story.

In order to motivate that discrepancies are politically motivated, we minimally must observe
that discrepancies between reported figures and error bands occur at politically opportune times:
During or subsequent to the crisis period. Is the problem luminosity as a signal? Also no. Similar
error bands for NOyx are given in the Appendix, Figure A.5, along with freight, electricity, and
cement, in Figures A.6 - A.8 respectively. In all cases, we arrive to similar unreasonable conclusions
as with luminosity itself: That reported output was “too high” during the boom years before
the Crisis, and “too low” during. To focus this line of inquiry, Figure 10 presents error bands

using each individual signal across the four major municipalities in the sample: Beijing, Tianjin,
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Shanghai, and Chongqing. In essentially all cases, the estimation suggests the same conclusion:
That annual data is not volatile enough to pinpoint evidence of data misreporting at times when
it is most probable.

The conclusion of this analysis, therefore, is that it is not the choice of signal which is prin-
cipally important. Rather, it seems thatv all potential signals, at annual frequency, are relatively
too smoothed for the purpose of validating reported statistics. Reasonably, a higher frequency
should be considered, but this will result in the need to drop luminosity from the analysis. Are

NOx emissions a worthy substitute?

5.2 The Global Financial Crisis and Great Recession

We may now conduct a similar analysis for the Great Recession period. Recalling again the
discussion of Section 2, the quarterly data set, spanning from 2006 Q1 - 2013 Q3 (' = 31) and
across all N = 31 regions, is utilized.

Again, the first concern is to separate the N = 31 regions into smaller groupings in which
population structural parameters are feasibly in common. The Monte Carlo experiment summa-~
rized by Table 5 indicates that given the longer T' = 31 length of this dataset, a cross sectional
dimension of just N = 6 is now likely to lead to correct coverage probabilities. The preliminary
estimates of NOx emissions signal elasticities E for this data set, given in Figure A.4, are used to
provide an ordering from which to define these groupings.

The results of this objective method of determining groupings is given by Figure 8 (b). Groups
1 and 2 (each N = 6) contain high elasticities, while Groups 4 and 5 (each N = 6) contain low
elasticities. Group 3 (N = 7) contains mid-range. The very first item to recognize is that in
comparison with the agnostic annual groupings, (Figure 8 (a)), these quarterly regional groupings
are transparently more geographically uniform. Specifically, this entirely data-based method of
choosing groups puts together regions which are more geographically and economically similar;
high elasticity groups are primarily located in the eastern urban provinces, while low elasticity
groups are primarily in the western, less urban provinces. Furthermore, that high elasticity
groups are located in the east makes sense, as this is the region with relatively more automobile
traffic and energy production more generally. Immediately it is clear that quarterly data contains

information which is simply not evident in annual, and that this information is economically
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Table 7: Estimates: Quarterly sample, 06Q1 - 13Q3.

Group 1 (N = 6) Group 2 (N = 6) Group 3 (N =17)
S=1 S=3 S=1 S=3 S=1 S=3

én 002  -led  -027 0.99  -1.69% le-3
(-2.64,1.20) (-0.63,1.27) (-3.91,-3¢-3)

65 0.95 0.34 -0.30 0.01 0.99 0.09
(-1.13,4.00) (-0.75,1.21) (-0.02,2.50)

oc  0.78 0.67 -0.51 Be-4 -0.59 0.91
(-0.87,2.40) (-0.86,1.00) (-0.99,1.17)
Group 4 (N = 6) Group 5 (N = 6) Pooled (N = 31)

S=1 S=3 S=1 S=3 S=1 S=3

on  -161 0 -1.40 0.01 ~1.58* 0
(-3.98,1.82) (-7.03,1.74) (-3.11,-0.11)

or 1.03 0.41 6.95 0.01 0.03 1
(-1.20,2.98) (-9.65,11.67) (-1.45,1.59)

oc 0.41 0.59 1.08* 0.97 -0.33 0
(-0.19,1.64) (0.68,0.86) (-0.75,1.30)

Notes: * Significance at 95% confidence level (confidence interval). Groupings are described by Figure
8 (b). N: NOy emissions. E: Electricity generation. C: Cement production.

sensible.

Quarterly data on luminosity and freight is not available. Table 7 therefore presents signal-
independent estimates for the remaining three signals (S = 1 columns). Estimates for the struc-
tural parameters @ are in the Appendix, Tables A.5-A.6. Once again, confidence intervals tend
to be too large to attribute statistical significance to the most important parameters, ¢ and 3.
Furthermore, group estimates (same table, § = 3 columns) again indicate a drowning-out of
reported output, as evidenced by their summing to nearly 1 in all cases. This again indicates
that signal-by-signal analysis is useful. However, these multiple-signal estimates are informative
inasmuch as they indicate which signals are marginally preferred in which groups. Whereas lumi-
nosity took that distinction in all cases with annual data, NOx emissions, electricity generation,
and cement production are variably the most preferred across areas in this quarterly sample. Yet,
it remains imperative to realize that NOyx emissions is the only of these signals which may be

externally validated.
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Once again, the more important statistic from the perspective of data validation are the error
bands arising from each signal. Quarterly error bands utilizing NOx emissions are depicted in
Table 11. The first observation that must be made with respect to these error bands versus
all those computed using annual data is their economic sensibility. Specifically, reported output
figures rarely escape these error bands over the time sample. For example, these error bands in
most cases do not indicate that the relatively high-growth figures reported before the crisis, or
low growth figures reported during the crisis, are unreasonable. Inasmuch, these statistics seem
to escape some of the problems experienced when using annualized data and any signal. Similar
conclusions are made with respect to error bands using either electricity generation or cement
production, Figures A.9 and A.10. Much as the actual groupings selected using quarterly data
seem to be more reasonable than using annual data, so do these error bands. This suggests that
quarterly data inherently contains more useful information for the purpose of model validation,
aside from the secondary problem of which signal is utilized.

In order to focus the discussion of which growth figures are statistically and economically
validated, attention is once again given to the four major municipalities in the sample. Error
bands computed using each NOx, electricity generation, and cement production individually
over the quarterly period are depicted in Table 12. Note that quarterly NOx emissions seem to
validate reported output numbers in both Beijing and Shanghai over the entirety of the sample.
Furthermore, they achieve this whereas all annual signals, and quarterly electricity generation and
cement production, fail to. Specifically, as in the annual sample, there is a major slowdown in
Beijing prior to the crisis period. However, this variability is primarily within the quarterly NOx
error band, while it insensibly fell outside of the band for any annualized signal. Furthermore,
this validation at the quarterly frequency can not be achieved using either electricity generation
or cement production, which again indicate the economically insensible conclusion that pre-crisis
figures are “too high.” Inasmuch, quarterly NOx emissions are in this case uniquely useful for
validating the data.

Are NOy emissions also useful for determining when reported output is not validated? First
consider the case of Tianjin. NOx emissions indicate that reported output figures come just above
the error band in the period immediately following the NBER dates. This timing — contempo-

raneous with a period of economic turmoil — would be consistent with the notion of politically
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motivated (upward) misreporting. However, it is perhaps too strong to conclude that these figures
are necessarily false. For example, while that conclusion is corroborated by cement data, it is con-
tradicted by electricity generation. Even though these later signals are potentially “reconciled”
to the data, they are therein useful in this auxiliary role to NOx.

But now, consider the case of Chongging. In the midst of the downturn in 2008, the “Chongging
model,” brought forth by the city’s then Communist Party secretary Bo Xilai, was hailed by many
as an exemplary economic initiative. It involved heavy investment, particularly in constructing
many highly visible and dazzling skyscrapers, and tax incentives for businesses. While these no
doubt contributed to GDP, are the monumental annualized figures reported just following the
NBER dates — peaking at a 65% annualized growth rate in 2010 — reasonable?

The substantial distinction of these figures from error bands computed using any NOx, and
corroborated by both electricity and cement, suggest not, from a purely statistical perspective.
Furthermore, the timing of this distinction fits the political convenience criterion necessary to
motivate intentional data manipulation. So, is it reasonable to pinpoint the case of Chongqing
as an instance of possible data misreporting? Yes. Bo Xiliai gained prestige not only from his
political heritage, but ability to put up GDP numbers. He was also an outwardly ambitious leader,
who feasibly relied on these figures for advancement. But he is also a famously unscrupulous party
official, who was deposed from office and sentenced to life in prison for corruption on September
22, 2013. Evenq before this fall from grace, his political rivals were known to openly criticize
reported GDP figures from Chongging. In the words of his predecessor Wang Yang in 2009,
“Some of our GDP figures sure look rosy.” (Liu, 2009). Undoubtedly, some aspect of what
Yang calls these “rigged” statistics may have been attributable to actual, though unnecessary
production. In his words, building an “unnecessary” bridge just to “tear it down.” But what the
NOx emissions based analysis here suggests is that reported GDP figures from Chongging during
this period were also too generous, regardless. In other words, they report production which may
not have actually taken place.

In sum, when used in tandem with sound economic reasoning and political context, NOx

emissions do seem to be useful for uncovering cases of possible data manipulation
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6 Conclusion

Can officially reported output statistics be externally validated using other verifiable signals of
economic growth? This paper has presented evidence that data may be either validated, or
- proven unlikely, on the basis of satellite measured NOx emissions data. The results indicate that
reported output figures over the Great Recession period are corroborated by satellite readings
for many locations, including Beijing and Shanghai. However, reported figures for Chongqing
are conspicuously not supported, which is meaningful insomuch as this location is now known
to have been run by a corrupt political official bent on improving GDP statistics. Furthermore,
these inferences are corroborated by indices of industrial production.

In comparison with the benchmark remotely sensed signal — nighttime luminosity — NOx
presents itself as a useful alternative when the nature of the economic problem necessitates higher
than annual frequency data be utilized. This paper has also presented a generalization of the
model presented in the landmark contribution of Henderson et al. (2012), in which all structural
parameters are globally identifiable, and systematic politically motivated misreporting is allowed
for without being assumed. It has also developed a statistical frarﬁework which allows for the
bootstrapping of confidence intervals with correct coverage probability, and error bands for the
ultimate combined measure; these error bands are central o ('liscerning when a given reported
output statistic is statistically improbable. Yet, as demonstrated in the case of Chongqging and Bo
Xilai, only with sound economic reasoning can the stronger conclusion that manipulation is likely
be supported. Finally, this model and methodology are generally applicable to any geographical
location or time period, as are NOx emissions.

In conclusion, while the application of the signal, model, and methodology in this paper is of
genuine interest in its own right, these tools also present themselves as more broadly useful in a

number of economic applications around the globe.
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Figure 4: Annual % change, China: 1993-2008.

(a) Satellite-measured signals.
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Figure 5: Elasticities by-year.
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Figure 6: Annual elasticities by-region (1993-2008).
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Figure 7: Annualized quarterly % change, China: 2006 Q1 - 2013 Q3.

(a) Satellite-measured NOx.
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Figure 8: Estimation groupings.

(a) Annual sample groupings.
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Figure 9: Annual luminosity 95% error bands.
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Figure 11: Quarterly NOx 95% error bands.
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Notes: Black line: Annualized quarterly reported % change, regional output. Gray shading: 2007-2009
Global Financial Crisis period. Pink shading: Error bands. Error bands are computed by bootstrap
using each respective Group 1-5 estimates. China computed using “Pooled” estimates.



Figure 12: Quarterly 95% error bands: Municipalities by signals.
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Notes: Black line: Annualized quarterly reported % change, regional output. Gray shading: 2007-2009
Global Financial Crisis period. Colored shading: Error bands. Error bands are computed by bootstrap
using each respective Group 1-5 estimates. China computed using “Pooled” estimates. Shanghai is in
Quarterly Group 1. Beijing and Chongqing are in Group 3. Tianjin is in Group 4.
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