# Bike-Sharing Systems and the Transportation Modal Choice Problem:

## A Natural Experiment in New York City

Christopher Simard, Bates College. Advised by Professor Michael Murray

#### Introduction:

- The Citi Bike program was introduced on May 27, 2013 in Lower Manhattan and Brooklyn
- The Transportation Modal Choice Problem was first investigated by Daniel McFadden during the implementation of the BART in San Francisco
- I build on his research with an econometric analysis of the relationship between bike-sharing and subway ridership



Fig 1. Citi Bike Station Distribution at Launch

| Dataset             | Source       | Date Range                       |
|---------------------|--------------|----------------------------------|
| Citi Bike Ridership | Citi Bike    | May 2013 to<br>December 2014     |
| Subway Ridership    | MTA          | January 2011 to<br>December 2014 |
| Weather             | NOAA         | January 2011 to<br>December 2014 |
| Land Use            | NYC Planning | N/A                              |

## Methodology:

• For Citi Bike program effect, the experimental effect of interest is given by the difference-in-differences estimator:

$$\begin{split} & (\mathbb{E}[ridership_{jat} \mid a=1,t=1] - \mathbb{E}[ridership_{jat} \mid a=1,t=0]) - \\ & (\mathbb{E}[ridership_{jat} \mid a=0,t=1] - \mathbb{E}[ridership_{jat} \mid a=0,t=0]) = \beta \end{split}$$

• I estimate this coefficient by exploiting the time variation in ridership using the "within" panel regressions:

$$ln(Entries_{jt}) = \alpha + \psi ln(Exits_{jt}) + \beta BikeOpen_t \times BikeStations_{jt} + \gamma StationFE_j$$
$$+ \delta DowFE_t + \phi Month_t + \lambda Controls_t' + \varepsilon_{jt}$$

• Next, I estimate the effect of subway ridership on the Citi Bike program by exploiting cross-sectional variation across stations using the "between" panel regressions:

$$\begin{split} Origins AM_{j} &= \alpha + \beta Destinations AM_{j} + \eta Stations_{j} + \omega Racks_{j} \\ &+ \sigma Lanes_{j} + \psi log(Population_{j}) + \phi Commercial Share_{j} \\ &+ \nu Manufacturing Share_{j} + \gamma Residential Share_{j} + \varepsilon_{j} \end{split}$$

#### Results:

Table 2: Within Estimation with Bike Stations as Infrastructure Measure

|                           | $Dependent\ variable:$                 |                    |                                                   |                     |
|---------------------------|----------------------------------------|--------------------|---------------------------------------------------|---------------------|
|                           | log(Entries) log(Exits) Manhattan Only |                    | log(Entries) log(Exits)<br>Manhattan and Brooklyn |                     |
|                           | (1)                                    | (2)                | (3)                                               | (4)                 |
| Bike Stations within 200m | -0.001 (0.009)                         | 0.019**<br>(0.008) | -0.002 (0.008)                                    | 0.022***<br>(0.007) |
| Observations              | 85,162                                 | 85,162             | 104,835                                           | 104,835             |
| $\mathbb{R}^2$            | 0.477                                  | 0.512              | 0.525                                             | 0.551               |
| Adjusted R <sup>2</sup>   | 0.476                                  | 0.511              | 0.524                                             | 0.550               |
| Note:                     | *p<0.1; **p<0.05; ***p<0.01            |                    |                                                   |                     |

Table 7: The First Mile: Cross-Sectional Variation Effects on Citi Bike Ridership

|                             | $Dependent\ variable:$      |                 |  |
|-----------------------------|-----------------------------|-----------------|--|
|                             | AM Origins                  | AM Destinations |  |
|                             | (1)                         | (2)             |  |
| AM Destinations             | 0.776***<br>(0.049)         |                 |  |
| AM Origins                  |                             | 0.564***        |  |
|                             |                             | (0.036)         |  |
| Subway Stations within 200m | -0.675**                    | 0.577**         |  |
| •                           | (0.341)                     | (0.291)         |  |
| Commercial Land Use Share   | 0.095                       | -0.113**        |  |
|                             | (0.064)                     | (0.055)         |  |
| Residential Land Use Share  | 1.807***                    | -4.069***       |  |
|                             | (0.682)                     | (0.543)         |  |
| Observations                | 332                         | 332             |  |
| $\mathbb{R}^2$              | 0.502                       | 0.620           |  |
| Adjusted R <sup>2</sup>     | 0.489                       | 0.611           |  |
| Note:                       | *p<0.1; **p<0.05; ***p<0.01 |                 |  |

## Implications:

- The complementary effect between modes is stronger than the substitution effect
- Bike riders flow from residential areas to subways in the morning and from subways to residential areas in the evening
- Ridership behavior suggests that bike-sharing is a feasible solution to the first mile, last mile problem

### References:

- Campbell, Kayleigh B., and Candace Brakewood. "Sharing riders: How bikesharing impacts bus ridership in New York City." Transportation Research Part A: Policy and Practice 100 (2017): 264-282.
- Noland, Robert B., Michael J. Smart, and Ziye Guo. "Bikeshare trip generation in New York city." Transportation Research Part A: Policy and Practice 94 (2016): 164-181.