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1. Introduction

The transportation modal choice problem became relevant in economic research due to the

launch of Bay Area Rapid Transit (BART), a public transportation system serving the San

Francisco Bay area. The initial phase of the system opened for passenger service in September

of 1972 and later phases rolled out through 1974. One of the main concerns for urban planners

of the time was the effect that BART would have on existing transportation modes. This

problem was first studied by the economist Daniel McFadden (1974), and his findings became

known as some of the first major work on discrete consumer choice, a centeral topic in applied

microeconomics. His work on the BART, in particular, became known as the first research on

the transportation modal choice problem.

The motivation for this thesis is the same as McFadden’s motivation for studying the BART.

McFadden sought to create a method for planners to perform cost-benefit analysis on the

implementation of new transporation systems in existing transportation networks. To perform

a cost-benefit analysis in this situation, it is imperative to have accurate ridership forecasts

for existing modes following the implementation of the new mode. For McFadden, this meant

surveying San Francisco residents to construct a stated-preferences model to forecast changes in

ridership following the implementation of the BART.

Since the time of McFadden’s research on the BART, the transportation modal choice

problem has seen a resurgence in the academic and public interest due to urban expansion. As

cities grow large, so does the need for efficient commuting methods as commutes take up a more

substantial part of the day. For example, in a recent Boston Globe article, the vehicle insurance

company AAA finds that in the city of Boston, the average one-way commute increased from 27

minutes in 2010 to 29 minutes in 2018. There is a clear need for efficient commuting modes to

mitigate these observed increases in commute times.

Urban expansion has created a situation in which low-income workers are unable to participate

in local urban employment markets due to geographic boundaries preventing easy access to

urban centers. In the urban economics literature, this phenomenon is known as the spatial

mismatch hypothesis, which is due to Kain (1968). The hypothesis suggests that for urban areas

with insufficient fixed-capital public transportation methods, unfacilitated suburban expansion,

which he calls “urban sprawl”, limits employment opportunities for the poor with limited access

to public transportation. Nechyba and Walsh (2004) further suggest that suburban expansion
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can create an inequitable distribution of public goods and services that can lead to housing

segregation and limit social mobility in the long run. Clearly, employment accessibility is a

crucial factor driving social equity.

A closely-related problem to urban sprawl is the first mile, last mile problem, which is best

explained through an example. Consider a commuter who wants to travel from point A to

point B. For many commuters, the distance between A and B will be too far or inconvenient

to be traversed directly. Most commuters in urban areas are forced to employ some form of

capital-intensive public transportation mode to cover most of the distance. Many commuters

will have trouble closing the distance from point A to the public transportation origin (the first

mile), and from the public transportation destination to the point B (the last mile). For many

low-income commuters, these distances may be too large or expensive for the potential commute

to be feasible.

Bike-sharing is one of the candidate transportation modes being considered by planners

to provide commuters with a cost-efficient method to overcome the geographic barriers to

employment and make the urban economy more equitable. Bike-sharing programs will only

provide a solution to the first mile, last mile problem if commuters actually employ bike-sharing

services to complement other forms of public transportation. Understanding the forces that

drive the relationship between bike-sharing and public transportation is the goal of this thesis.

With the recent launch of Uber, Lyft, and other ride-sharing services, the transportation

modal choice problem has made a resurgence in the public and academic interest. Out of the

resurgence, a small body of literature focused on the transportation modal choice effects of

bike-sharing emerged.1 In this thesis, I contribute to this body of academic work by studying

the interplay between the MTA subway system and the Citi Bike program in New York City.

To do this, I perform an econometric estimation of the effect of the Citi Bike program on

subway ridership in a natural experiment environment that exploits the time variation in the

subway ridership data. I then perform a similar estimation of subway infrastructure on Citi

Bike ridership that exploits the cross-sectional variation across the Citi Bike stations.

I find that subway stations within proximity to bike-sharing infrastructure see more ridership

than bike-sharing stations out of proximity to subway stations. This positive effect suggests

that some commuters are drawn to subway stations that afford them the opportunity to close

the first and last miles of ther commute with a bike.
1See Fishman (2016) for a coprehensive overview of the bike-sharing literature.
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I perform the same analysis as above with a sub-sample of subway stations located in the

urban core of New York City, and find that the Citi Bike program reduces subway ridership.

This finding suggests that the Citi Bike program is a substitute for commuters who live in the

urban core and for tourists. It also suggests that the overall increase in subway ridership is

driven by commuters on the urban periphery, some of whom complement their subway journeys

with bike trips. Overall, these results provide evidence that commuters employ bike-sharing to

reduce inefficiencies created by the first mile, last mile problem.

To observe the flow of Citi Bike ridership and form a more nuanced understanding of the

relationship between bike-sharing programs and subways, I create an econometric model that

exploits the cross-sectional variation across Citi Bike stations. To do this, I separate the Citi

Bike ridership data into morning and evening times to capture each leg of the daily commute.

In the morning, I find that riders depart from residential areas and park near subway stations

and in the evening, they get on bikes near subway stations and ride to residential areas. This

observed commuting pattern suggests that some riders complement their subway journeys with

Citi Bike trips for the first and last miles of their commutes.

The thesis proceeds as follows. Section 2 provides background on bike-sharing programs as

well as their benefits and limitations. Section 3 is a review of the relevant literature on bike-

sharing programs. Section 4 presents an overview of the methodology I employ to understand

the relationship between the two modes. Section 5 discusses the data and provides their sources.

Section 6 analyzes the results of the methods outlined in the methodology. I conclude in Section

7 with a discussion of policy implications of the results and areas for further research. Appendex

A details the specific processes required to coerce all of the required data into a format conducive

to econometrics.

2. Background

What is a Bike-Sharing Program?

Bike-sharing programs are comprised of a fixed network of stations placed throughout an

urban area. Bikes freely move about stations as they are used by riders throughout the day.

Each station has a fixed number of docks at which the bikes are stored while not in use. Potential

riders engage with the system by removing a bike from one station and riding it to another

station with an available dock and dropping it off for the next rider to use.
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Typical bike-sharing programs can be paid for on a per-ride basis such as a subway or bus,

but most riders pay for a yearly subscription out of convenience. The current price for a Citi

Bike membership is $149 per year.2 For the data used in this thesis, 85% of rides are taken by

yearly subscribers.3 A yearly subscription to the Citi Bike program provides customers with

unlimited rides under thirty minutes. For every additional fifteen minutes, the customer is

charged at a rate of three dollars. Since most customers use this service as a commuting tool,

very few rides go over thirty minutes and most trips are covered by the subscription cost.

The role of the company sponsoring the bike-sharing program is to ensure that the stations

and bikes are in working order and to redistribute bikes across the system throughout the day

to allow the supply of bikes at each station meet the demand. One advantage of bike-sharing

programs is their low maintenance cost. The Citi Bike program employs technicians and

mechanics to perform routine repairs on bikes and the stations themselves. They also employ

truck drivers to move about the city manually redistributing bikes throughout the network

overnight when ridership is minimal. Thus, the role of the company is to mitigate the chaos

created by routine customer usage through maintenance and redistribution.

The Citi Bike Program

Figure 1: Distribution of Citi Bike Stations at Launch
2The yearly subscription price at launch was $95, but was later raised to $149 following the announcement of

a system expansion in 2014.
3The remaining rides are taken by single riders, one-day pass, three-day pass, and weekly-pass riders.
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The initial plan to improve bicycle infrastructure throughout New York City was introduced

by the New York Department of Transportation in their Sustainable Streets publication.4 The

Citi Bike program was launched on May 27, 2013 with a network of 332 stations and 6,000 bikes

across lower Manhattan and Brooklyn. The program was introduced as a part of a city-wide

effort to improve transportation conditions and improve public health. Due to Citi Bike’s rapid

popularity growth, the program has expanded multiple times.5 Since launch, the Citi Bike

program has expanded into upper Manhattan, Queens, and Jersey City. The program has not

grown since 2016, but there are plans in place to expand further into Harlem and Astoria.

Citi Bike’s rapid popularity growth allowed the system to quickly integrate into the city’s

extensive bicycling infrastructure. Since 2013, the program’s yearly ridership has grown by

11.8 million trips, increasing from 5.8 million trips in 2013 to 17.6 million trips in 2018. Since

the program’s launch in 2013, there has only been one death involving a Citi Bike rider which

suggests that drivers have made the necessary adjustments to accomodate this new mode of

transportation.

The Benefits of Bike-Sharing Programs

They payment structure of the Citi Bike program was a main driver for the system’s rapid

popularity growth. Unlike the subway system, potential riders can make a single down-payment

once a year to cover all of their Citi Bike trips instead of paying per-ride. From the work of

Richard Thaler (1999) on mental accounting, we know that consumers prefer making a single

lump-sum payment over smaller sequential payments, even when the total costs are equal.6 In

other words, the commuter enjoys the ability to quickly open and close the mental account for

their Citi Bike rides once a year rather than re-open it for every bike trip.

Apart from the convenience a subscription-based payment system, bike-sharing programs

provide riders with all of the same benefits of owning a bike without the additional payment

considerations. Citi Bike docks have an electronic locking system so riders do not have to invest

in a personal lock. In addition, routine maintenance is covered by the subscription cost, and so

riders do not have to pay for repairs.
4Their sustainable streets publication can be found here: http://www.nyc.gov/html/dot/downloads/pdf/

stratplan_compplan.pdf.
5The sample period for this paper ranges from January 2011 to December 2014, prior to the first program

expansion in 2015.
6I experiment with distances of 100m and 400m. I do not find the results modestly different at other distances.
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Bike-sharing programs have a proven history of improving public health. This is certainly

true in New York City, where Babagoli and Kaufman, (2019) perform a cost-benefit study on

the expansion of the Citi Bike program in 2015. They find that the expansion resulted in a net

economic benefit increase from $18,800,000 to $28,300,000. They also conclude that the health

benefits of the Citi Bike program increase with usage and the benefits of the program are not

equitably distributed due to inequitable station location. They believe that an equity focus can

improve overall health benefits when implementing bike-sharing programs.

The Limitations of Bike-Sharing Programs

Though the yearly subscription cost for a Citi Bike membership is lower than the equivalent

number of subway trips for most commuters, the price tag is still substantial and poses a barrier

to entry for some low-income workers. To foster equity, the Citi Bike program has a reduced

membership rate for New York City residents in public housing. Similar pricing strategies in

other cities with bike-sharing programs would make the benefits of the program more evenly

distributed across people of different incomes and improve the general welfare since lower-income

commuters would get the most use out of the program.

Like any public policy, local governments face the equity-efficiency tradeoff when finding the

socially optimal positioning of bike-sharing stations. For bike-sharing programs, the trade-off is

between maximizing usage and maximizing coverage. Maximizing usage is when bike-sharing

stations are installed in densely populated areas so potential ridership and profit are maximized.

This allocation of stations results in the inequitable distribution of benefits analyzed by Babagoli

and Kaufman (2019). Maximizing coverage is when bike-sharing stations are installed in locations

that cover the largest geographic area. This positioning allows all people across the urban area

to have access, though it may cause a shortage of bikes in densely populated areas when demand

is high.

Researchers in the urban planning literature have performed computational estimations

of the maximal usage and maximal coverage approaches to bike-sharing station allocation as

approximations of their efficiency and equity-maximizing allocations. The effiency estimation

requires finding the optimal station positioning that maximizes profit subject to a cost constraint

on program implementation and maintenance. The equity estimation requires finding the

optimal station position that maximizes geographic coverage subject to a profit constraint. It

is important to note that these optimizations are approximations of the socially efficient and
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equitable allocations. For example, it may not be equitable or efficient to leave some commuter

in the urban core without the ability to use a bike due to an insufficient supply of bikes in

locations of high demand. In the context of bike-sharing, the equity-efficiency tradeoff is a very

complex question that requires an understanding of the program beyond its impact on modal

choice.

Another limitation of bike-sharing programs is bike redistribution. As riders use the system

throughout the day, the distribution of bikes across the system becomes imbalanced. In the

literature, finding the optimal method to redistribute the bikes is called the inventory rebalancing

problem. To maintain a proper distribution of bikes throughout the system, bike-sharing program

sponsors typically dispatch a number of trucks to move about the network manually redistributing

bikes at night to meet the demand for the following day. This process is expensive as it requires

substantial capital and labor. To grapple with the cost of redistribution, many programs

throughout the world have created a system by which riders can earn free trips by redistributing

bikes to stations with insufficient bikes to meet the demand. While this does lower the severity

of the problem, many programs like the Citi Bike program still require mass redistribution to

ensure bikes are optimally allocated at the start of each day.

3. Literature Review

Here I introduce briefly the literatures on (i) bike-sharing location optimization, (ii) the inventory

rebalancing problem, and (iii) bike-sharing and modal choice.

Bike-Sharing Infrastructure Location Optimization

Much of the literature on bike-sharing programs is focused on providing optimization

techniques for finding the optimal allocation of bike-sharing stations within an urban area. For

cities with a bike-sharing program, these techniques are designed to spot inefficiencies in the

system to understand what changes, if any, can be made to improve it. For cities without a

bike-sharing program, these same techniques can be applied to estimate the optimal allocation of

stations prior to implementation. The techniques employed throughout this area of the literature

are GIS intensive and require computational approximations to solve the necessary optimization

problems.

For example, Garcia-Palomares et al. (2012) provide a GIS location-allocation method to

find the optimal allocation of bike-sharing stations based on social, demographic, geographic,
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and built-environmental factors. They begin their study by forecasting system usage across

the city based on demographic information such as population density and employment. These

forecasts allow their GIS model to place stations in locations where potential usage is maximized.

They also use the forecasts to set the number of docks per station. They employ commercial and

residential land-use information to classify each station as an “attractor” or “generator” based

on whether more trips begin or end at each station at different times of day. The setup of their

optimization problem allows them to approximate the equity-efficiency trade-off discussed in the

previous section by changing the objective function to maximize potential usage or maximize

potential access. Their results confirm the intuition that stations should be placed within

proximity to metro stations.

The Inventory Rebalancing Problem

In the previous section, I discussed how inventory rebalancing is a substantial cost facing

bike-sharing programs. The literature on this problem is split into two areas. The first area

deals with optimizing manual rebalancing strategies. These studies investigate static rebalancing

strategies in which bicycles are manually reallocated overnight when demand is low. Other studies

investigate dynamic rebalancing in which bicycles are strategically redistributed throughout the

day when demand is high at some stations and low at others. The second area of research on

the inventory rebalancing problem deals with self-rebalancing through price incentives. These

authors study how companies that sponsor bike-sharing programs can manipulate prices for

bike-sharing services, or even specific routes, to incentivize riders to change their commuting

habits and redistribute the bikes on their own to lower the cost of redistribution.

Dell’Amico et al. (2013) provide an analysis of the physical rebalancing problem in the static

context for a case study in Reggio Emilia, Italy. They model the truck routes as a multiple

traveling salesmen problem in which the routes of some fixed number of trucks are optimized

to minimize travel costs. They draw extensively on graph theory to formulate the problem.

In particular, they represent the bike-sharing network as a complete digraph for which each

station is represented by a vertex and each path between stations as a vertex. Each path

between is assigned a weight proportional to the cost of traveling along the edge. Thus, the

problem seeks to minimize the total cost subject to a demand constraint. Due to the number of

parameters in the problem, they approximate the solution computationally. After constructing

their computational method for Reggio Emilia, they expand the results to other urban areas.
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Haider et al. (2014) minimize manual rebalancing costs subject to a system profit constraint

by manipulating the prices of bike routes to facilitate dynamic rebalancing. By manipulating

prices to purposefully make the system imbalanced, they manual rebalancing effort is less

costly since the number of manual rebalancing trips is decreased. They model the scenario as

a two-agent optimization problem. The first agent is the bike-sharing system operator who

sets the prices of each bike route to minimize the number of slack stations (those with too few

bikes) and surplus stations (those with too many bikes) at the end of the day. The secod agent

represents the riders who minimize their commuting costs subject to time constraints. With

this formulation, computationally approximate the solution to this optimization problem and

show that if performed well, a dynamic pricing strategy could be employed to lower manual

redistribution costs.

Bike-Sharing Programs and Modal Choice

The literature on bike-sharing programs and modal choice is a combination of stated

preference studies and revealed preference studies. The revealed preference studies use a similar

method to that employed by Daniel McFadden during his study of the BART which consists of

retroactively surveying riders to understand how their commuting habits have changed following

the implementation of the bike-sharing program. The revealed preference models use econometric

methods on ridership data of different modes to understand how ridership of existing modes has

changed following the implementation of the bike-sharing program. This thesis is a member of

the literature on revealed preferences.

In a survey-based study focused on how commuters have changed their commuting habits

following bike-sharing implementation, Martin and Shaheen (2014) study the effect in Washington

DC and Minneapols. They find that a higher proportion of commuters in Washington DC

decrease rail ridership than those who don’t and a higher proportion of commuters in Minneapolis

increase ridership than those who don’t. In both metro areas, they find that commuters who

live in the urban periphery are more likely to complement bike-sharing and metro ridership.

They find a substitution effect between modes for commuters living in the urban core.

In a revealed-preferences study, Ma et al. (2019) investigate the metro ridership effect of the

Capital Bikeshare program in Washington, DC. They perform an origin-destination analysis

with ride-level bike-sharing data and find that over 80% of stations with more than 500 trips

per week are located within proximity to subway metro stations. They also perform a panel
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regression analysis in which they control for built-environmental and demographic factors and

find that a 10% increase in Capital Bikeshare ridership increases metro ridership by 2.8%.

4. Methodology

Subway Ridership Effect of Bike-Sharing Infrastructure

In this section, I analyze the effect of the Citi Bike program on subway ridership in a natural

experiment environment. I assume the Citi Bike program is a shock to the New York City

transportation system since it is unlikely that people changed their transportation habits prior

to its implementation. To measure the program’s effect, I estimate a difference-in-differences

regression framework at the subway station level that measures the difference in ridership of

stations before and after Citi Bike’s implementation. In each of the regression analyses, I

only consider subway stations within Manhattan and Brooklyn. The reason for this is that

many of the stations far from the center of the city, (those in Long Island, for example), have

fundamentally different ridership patterns that cannot be captured without a robust measure of

subway ridership.

To capture the causal effect of interest, I adapt the work of Campbell and Brakewood (2017)

to the study of subway systems. As in their study, I only consider subway stations located in

Manhattan and Brooklyn. I let the subway stations out of proximity to a bike-sharing station

be the control group and those witihin proximity to a bike-sharing station be the treatment

group. I let the parameter α denote the treatment effect and define a = 1 if subway station j is

within proximity to a bike-sharing station and a = 0 otherwise. I define t = 1 if the date is on

or after May 27, 2013, the first day of operation for the Citi Bike program and t = 0 otherwise.

With this assignment, the average treatment effect at the station level becomes

(E[ridershipjat | a = 1, t = 1]− E[ridershipjat | a = 1, t = 0]) −

(E[ridershipjat | a = 0, t = 1]− E[ridershipjat | a = 0, t = 0]) = β

Here, β represents the average treatment effect across all subway stations and will be

estimated with an OLS panel regression. In this regression framework, the causal effect of

interest is the within-station ridership effect of the Citi Bike program. In other words, β

corresponds to the expected deviation in subway ridership of a station from its own mean. To

find this causal effect, I estimate the following panel regressions:
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ln(Entriesjt) = α+ βBikeOpent ×BikeStationsjt + γStationFEj

+ δDowFEt + φMontht + λRaint + εjt

ln(Exitsjt) = α+ βBikeOpent × ln(BikeDocksjt) + γStationFEj

+ δDowFEt + φMontht + λRaint + εjt

Here, β is the difference-in-differences estimator for the within subway ridership effect of the

Citi Bike program. The variables, ln(Entriesjt) and ln(Exitsjt) are the natural log of subway

station entries and exits for subway station j at time t. As a robustness check, I construct

two measures of bike-sharing infrastructure. I define BikeStationsjt equal to the number of

bike-sharing stations within proximity to subway station j. The variable Docksjt represents

the total number of bike-sharing docks across all subway stations within proximity to subway

station j. Some of the entry, exit, and docks observations are equal to zero, so I add one to every

observation to avoid creating undefined observations (since ln(0) = ∅). Since I am without a

robust measure of subway ridership across stations, I proxy for ridership using ln(Entriesjt) as

above and similarly for ln(Exitsjt). I include the dummy variable BikeOpent = 1 if the date is

on or after May 27, 2013, the first day of operation for the Citi Bike program and t = 0 otherwise.

All of the regressions use 200m as the proximity for which bike-sharing infrastructure measures

are calculated. The results are not changed using modestly different proximity measures.

To isolate the causal effect of the Citi Bike program β, I include station-level fixed effects to

control for cross-sectional, station-level variation. The subway data range from January 2011

to 2014 so I include a Montht fixed effect to control for system-level time variation. Since

many riders use the bike-sharing program as a commuting tool, there is substantial variation

in bike-sharing ridership throughout the week which I control for with a day-of-week dummy

variable. There is additional variation at the line level that cannot be captured with a subway

station-level fixed effect which I control for with a subway line fixed effect. Since weather plays

an important role in determining bike-sharing ridership, I control for rain with Raint in each

regression model.

To consider the possibility that subway ridership is fundamentally different for stations

within the urban core, I estimate the above regressions for all subway stations across Manhattan

and Brooklyn and again for those within proximity to a Citi Bike station. I use Citi Bike station

proximity to proxy for urban core and interpret the results.
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Citi Bike Ridership and the First Mile, Last Mile Problem

To address the first mile, last mile problem, I transition to a between estimation of the

effects of subway placement on the flow of Citi Bike ridership ridership. I create a regression

framework that exploits the cross-sectional variation in the Citi Bike ridership data. I base

my regression framework on the work of Noland et al. (2016). Their regression methodology

exploits the cross-sectional variation across a number of important factors including general bike

ridership infrastructure, proximity to subway stations, land use mix, demographics, and other

built-environmental factors. They estimate their regression framework on individual months of

data to understand how these cross-sectional factors influence ridership throughout the year.

The groundwork for this regression methodology is similar to that of the authors, and

requires extensive GIS work to coerce the data into a format conducive to econometrics. Since I

require information on the cross-sectional factors within proximity to each Citi Bike station, I

introduce boundaries around each Citi Bike station within which these parameters are calculated.

In GIS, this is accomplished with a Voronoi tessalation in which each node is a different Citi

Bike station. Performing this GIS calculation gives the following plot:

Figure 2: Voronoi Diagram centered on Citi Bike stations

The Voronoi plot creates Citi Bike station regions based on their relative proximities to

other stations. Formally, a Voronoi plot is defined on a metric space X with a distance function

d. Let K be a set of indices and let (Pk)k∈K be an ordered collection of nonempty subsets (the

sites) in the space X.The Voronoi region, Rk, associated with the site Pk is the set of all points
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in X whose distance to Pk is not greater than their distances to all other sites Pj where j 6= k.

In other words, if d(x, a) = inf{d(x, a) | a ∈ A} denotes the distance between the point x and

the subset A, then

Rk = {x ∈ X | d(x, Pk) ≤ d(x, Pj) ∀ j 6= k}

The Voronoi diagram is the collection of Voronoi regions (Rk)k∈K . By construction, the

regions are disjoint and so they form a partition over the region of interest. In this case, the

region of interest is lower Manhattan and Brooklyn. For x, a ∈ X the distance funtion is the

Euclidean distance:

l = d[x, a] = d[(x1, x2), (a1, a2)] =
√

(x1 − a1)2 + (x2 − a2)2

I use the above Voronoi diagram to construct measures of land use mix which I integrate

into the following regression methodology.

Since people employ bike-sharing as a commuting tool, there is likely a measurable flow of

ridership across the Citi Bike network in the morning that is mirrored in the evening. If we

can isolate the commuting variation in ridership, we will be able to determine if subway station

placement play a role in determining the flow of ridership for Citi Bike commuters. If commuters

complement their subway journeys with Citi Bike trips, we would expect a flow of bikes moving

from residential areas to subways in the morning and from subways into residential areas in the

evening. To test this claim, I require the following regression.

OriginsAMj = α+ ψDestinationsAMj + βStationsj + γRacksj

+ δLanesj + φlog(Populationj) + λCommercialSharej+

+ σManufacturingSharej + ωResidentialSharej + εj

Here, OriginsAMj denotes the average number of Citi Bike trips starting from station j in

the morning. Since we want to understand the effect of subway infrastructure on bike-sharing

ridership for the morning and evening commute, it is important to control for Citi Bike round

trips in which both legs of the trip occur during the same part of the day. I control for this

variation as a proxy for non-commute Citi Bike trips. Thus, the only remaining variation in the

data is due to commuting. I believe the factors driving commuting and non-commuting ridership

to be fundamentally different, and therefore, controlling for non-commuting round-trips does not
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introduce endogeneity into the regression. Therefore, I believe that the remaining coefficients in

the regression model provide unbiased estimates of the Citi Bike commuting variation effects of

subway infrastructure.

The parameters Stationsj refers to the number of subway stations within 200m of Citi Bike

station j. The parameters Racksj and Lanesj denote the number of bike racks and bike lanes

within the Voronoi polygon containing Citi Bike station j. I include these as regressors to proxy

for general bike ridership activity as controls for endogeneity arising from the location of the

stations. This controls for the case of supply-driven-demand, which would bias the coefficients

upward in areas in which general bike ridership is prevalent. As another proxy for general bike

ridership activity, I include log(Populationj) which measures the population of the census tract

containing Citi Bike station j. The parameters CommercialSharej , ManufacturingSharej ,

and ResidentialSharej represent the proportions of commercial, manufacturing, and residential

land use occupying the Voronoi polygon containing Citi Bike station j. I omit park lans use

data to avoid perfect multicollinearity. Below is a graphical representation of land use data:

Figure 3: Districts by Land Use Type

In this regression, I use the land use share variables to proxy for commercial and residential

areas of the city. The paths of Citi Bike ridership can be inferred based on the directions of

the land use variables relative to each other. Since the paths of travel for riders are the main

motivator for this analysis, the magnitude of the coefficients on each land use variable is of

secondary importance. Thus, we can glean information on the paths of travel for Citi Bike
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commuters by comparing the directions of the coefficients on the land use variables to each

other.

Since there are two ways in which a commuter can complement a subway journey with a bike

trip and each bike-sharing trip has an origin and destination, there are four different regression

models that I use to capture each aspect of the first mile, last mile problem. I repeat each

regression with Originsj and Destinationsj switched and with data from the morning and the

evening. Thus, all of the regressions are identical and differ only by the dependent variable

and the round-trip control variable. The expected direction of each effect of interest for each

regression is summarized in the following table.

Dependent Variable Stationsj CommercialSharej ResidentialSharej

OriginsAMj > 0

OriginsPMj > 0 > 0

DestinationsAMj > 0 > 0

DestinationsPMj > 0

I expect that since people use the Citi Bike program as a commuting tool, there will be an

flow of ridership from residential areas into commercial areas and subway regions in the morning.

Therefore, I expect a positive coefficient on ResidentialSharej and negative coefficients on

CommercialSharej and Stationsj for the first and third regressions, respectively. In the

afternoon, I expect that there will be a flow of ridership from commercial areas and subway

regions into residential areas. Therefore, I expect positive coefficients on CommercialSharej and

Stationsj and a negative coefficient on ResidentialSharej for the second and fourth regressions,

respectively.

Though it is not necessary, negative signs on the remaining coefficients would provide

additional support for the idea that riders employ bike-sharing services as a commuting tool to

complement their subway journeys. In the results, I report the regression outputs for each of

these regressions and discuss the implications in terms of the first mile, last mile problem.

5. Data

In this thesis, I draw on five sources of data which I detail below. All of the data are publicly

available and do not require special permissions, memberships, or subscriptions.
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Metropolitan Transportation Authority

Though the MTA does not publish a robust measure of ridership across subway routes, they

do publish the number of subway entries and exists across all MTA subway stations which I

substitute as a proxy for ridership. In this study, I employ their data between January 1, 2011

and December 31, 2014 to capture the entire time period of interest. The data are disaggregated

across turnstiles into four-hour increments and are stored as cumulative entries and exits. These

data require extensive pre-processing before they are conducive to panel econometrics. See the

data appendix for more information on the data pre-processing steps.

Citi Bike

Since their launch in May 2013, Citi Bike have released disaggregated, open-source data on

all Citi Bike trips. These data include the start station coordinates, end station coordinates,

start time, end time, ride duration, bike ID, rider type, rider age, and rider gender at the trip

level. I download these data from launch on May 27, 2013 to December 31, 2014 to capture the

entire treatment period of interest. Citi Bike also maintains a live station feed containing the

number of bikes and available docks at every Citi Bike station to provide users with real-time

information to guide their commutes. I use their live feed to gather data on the number of

bike docks across all Citi Bike stations and construct measures of bike-sharing infrastructure.

The abundance of information available for each Citi Bike trips allows for slicing along different

parameters to gain a nuanced understanding of the forces driving the system.

New York City Government

The NYC government maintains a number of geographic datasets that I integrate into the

analysis. The first of these datasets is a shapefile containing the locations of all subway stations

across NYC. In this shapefile, they include the coordinates of each station, the lines for which

the stations provide service, and any conditions regarding service modifications throughout the

week. They also publish an MTA subway line shapefile which allows me to control for line-level

characteristics that are not captured at the station level. In addition, the NYC government

maintains a shapefile containing the locations of all bike lanes throughout the city. They include

the type of bike lane, the direction it faces, and the date of implementation. Lastly, they publish
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a shapefile containing the coordinates of all bike rack locations throughout NYC. Bike rack and

bike lane locations are important proxies for cross-sectional bike activity.

New York City Department of City Planning

The NYC Department of City Planning maintains a map of the city broken into land

use districts. There are many divisions in the data, though I only incorporate three into the

analysis. I employ their shapefiles containing residential districts, commercial districts, and

manufacturing districts. Since subways and bike-sharing programs are commuting tools, there is

substantial intra-day ridership variation for both transportation modes. Understanding the land

use around each subway or bike-sharing station is important to understanding the dynamics

governing the complementary and substitution effects between the two modes. In addition, the

NYC Department of City planning maintains demographic shapefiles broken down by census

tract. I incorporate population and employment shapefiles created with 2010 census data as

cross-sectional demographic controls.

National Oceanic and Atmospheric Administration

The NOAA takes online custom historical data requests across all weather observatories

throughout the United States. For this study, I performed a custom data request for NYC

from January 1, 2011 to December 31, 2014. They provide daily measures of high and low

temperatures, wind, snow, rain, thunder, and other weather-related indicators that I integrate

as controls.

6. Results

Subway Ridership Effect of Bike-Sharing Infrastructure

I estimate the first regression framework to isolate the MTA subway ridership effect of the

Citi Bike program as a natural experiment. Each regression table presents the results for entry

and exit data for a geographic proximity measurement of 200m.7 Table 1 contains the regression

output for which the variable BikeStationsjt is the measure of bike-sharing infrastructure.

Table 2 contains the regression outputs for which the variable BikeDocksjt is the measures of
7I experiment with distances of 100m and 400m. I do not find the results modestly different at other distances.
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infrastructure. Table 3 contains the regression outputs for a robustness check in which the only

subway stations considered are those within a 200m proximity to a bike-sharing station. All

regressions include day-of-week, station, and line fixed effects and a system-level time trend. All

regressions are performed in R with the plm package. The regression tables are generated in R

with the stargazer package.

First, I estimate the regression with BikeStationsjt as the measure of bike-sharing infras-

tructure.

Table 2: Within Estimation with Bike Stations as Infrastructure Measure

Dependent variable:
log(Entries) log(Exits) log(Entries) log(Exits)

Manhattan Only Manhattan and Brooklyn
(1) (2) (3) (4)

Rain −0.352∗∗∗ −0.311∗∗∗ −0.346∗∗∗ −0.309∗∗∗
(0.017) (0.016) (0.014) (0.013)

Bike Stations within 200m −0.006 0.012 −0.005 0.017∗∗
(0.008) (0.008) (0.008) (0.007)

DOW FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Line FE Yes Yes Yes Yes

Observations 85,162 85,162 104,835 104,835
R2 0.477 0.512 0.525 0.551
Adjusted R2 0.476 0.511 0.524 0.550

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results in Table 1 suggest that the presense of bike-sharing infrastructure has a significant

effect of subway ridership. In particular, the coefficient on BikeStationsj is positive and

significant for ln(Exitsjt), but not for ln(Entriesjt. This result is robust to the exclusion of

Brooklyn-based subway stations. By the subway stations measure of infrastructure, the results

suggest a complementary effect between the modes. Since none of the coefficients of interest are

negative, the results do not suggest a substitution effect between the modes.

The positive coefficient on BikeStationsjt for the ln(Exitsjt) regressions suggests that com-

muters choose to exit the subway system at stations where there are bike-sharing opportunities in

proximity to the subway station. The magnitude of the coefficients suggests that each additional
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bike-sharing station within 200m to a subway station increases the number of exits from that

station by about 2%. This result is robust to the exclusion of Brooklyn-based subway stations.

As a robustness check, I estimate the same regressions in Table 2 but with log(BikeDocksjt)

as the measure of bike-sharing infrastructure.

Table 3: Within Estimation with log(Bike Docks) as Infrastructure Measure

Dependent variable:
log(Entries) log(Exits) log(Entries) log(Exits)

Manhattan Only Manhattan and Brooklyn
(1) (2) (3) (4)

Rain −0.352∗∗∗ −0.311∗∗∗ −0.347∗∗∗ −0.309∗∗∗
(0.017) (0.016) (0.014) (0.013)

log(Bike Docks) within 200m 0.015∗∗∗ 0.024∗∗∗ 0.007 0.019∗∗∗
(0.005) (0.004) (0.004) (0.004)

DOW FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Line FE Yes Yes Yes Yes

Observations 85,162 85,162 104,835 104,835
R2 0.477 0.512 0.525 0.551
Adjusted R2 0.476 0.511 0.524 0.550

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The positive coefficients on ln(BikeDocksjt) for the ln(Exitsjt) regressions corroborate the

results of Table 2 and suggest a complementary effect between the modes for the last mile of

the commute. In addition, the coeffients on ln(BikeDocksjt) for the ln(Entriesjt) regressions

have become positive and significant. Unlike in Table 2, these results suggest a complementary

effect between modes for the first mile of the commute as well. As in Table 2, the results are

robust to exclusion of Brooklyn-based subway stations and none of the coefficients are negative

which suggests that there is no substitution effect between the modes.

The results suggest that each time the number of bike docks within 200m of a subway station

doubles (increases by 100%), the number of entries at that station increase by between 1% and

2%. This range of values is consistent with the coefficients on BikeStationsjt form Table 2.

To illustrate this, consider a subway station within a 200m proximity to 30 docks. If another

bike-sharing station is added with 30 new docks, the coefficients suggest that these new docks
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will increase the number of entries at that subway station by between 1% and 2%. Unlike the

coefficients in Table 1, the coeffients on ln(BikeDocksjt) demonstrate the decreasing marginal

change in the effect on subway entries and exits as more subway stations and docks are added.

Next, I estimate the same regression models as in Tables 1 and 2 but only considering the

subway stations within a 200m proximity to a bike-sharing station.

Table 4: Within Estimation with Stations in Proximity to Bike-Sharing Infrastructure

Dependent variable:
log(Entries) log(Exits) log(Entries) log(Exits)

(1) (2) (3) (4)

Rain −0.359∗∗∗ −0.314∗∗∗ −0.359∗∗∗ −0.314∗∗∗
(0.022) (0.020) (0.022) (0.020)

Bike-Sharing Stations within 200m −0.122∗∗∗ −0.112∗∗∗
(0.015) (0.014)

log(Bike Docks) within 200m −0.084∗∗∗ −0.083∗∗∗
(0.018) (0.016)

DOW FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Line FE Yes Yes Yes Yes

R2 0.490 0.523 0.490 0.523
Adjusted R2 0.489 0.522 0.489 0.522

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results of Table 4 appear to contradict our earlier findings. However, they add more

nuance to our understanding of the relationship between bike-sharing and subway programs.

All of the coeffients on each measure of bike-sharing infrastructure are negative which suggests

a substitution effect between the modes. Citi Bike stations are located in the urban core, which

means the only subway stations being considered in the above regressions are also in the urban

core. These subway stations have fundamentally different ridership patterns than those on the

urban periphery, which suggests the above regressions are picking up a completely different

signal than in the previous regressions.

By dropping subway stations on the urban periphery, we lose the effect of people riding bikes

to the subway to commute into and out of the urban core. In effect, we are left observing the

changes in subway ridership for people who live in the urban core or for tourists. This suggests
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that the effect of bike-sharing on subway ridership depends on where the commuters reside

relative to the urban core. Commuters in the urban core appear to employ bike-sharing as a

substitute while those on the urban periphery employ bike-sharing as a complement.

The coefficients on BikeStationsjt suggest that each additional bike-sharing station within

proximity to subway station j decreases subway ridership at that station by between 11% and

12% relative to other stations in the urban core. In addition, the coefficients on ln(BikeDocksjt)

suggests that if the number of bike docks within proxoimity to subway station j doubles (increases

by 100%), subway ridership will decrease by about 8% relative to other stations in the urban

core.

The analysis above provides us with a nuanced understand of the interplay between bike-

sharing programs and subways. We find that the overall effect of the Citi Bike program was a

subway-wide increase in exits, which suggests that commuters employ Citi Bike as a complement

to subway ridership in at least one direction. We find this result to be robust across station and

dock measures of bike-sharing infrastructure and to the exclusion of Brooklyn-based subway

stations.

We also do not observe evidence of a substitution effect between the modes until we exclude

subway stations on the urban periphery. After making this exclusion, we find that bike-sharing

infrastructure greatly decreases subway ridership relative to other subway stations in the urban

core. This suggests that for commuters and tourists living in the urban core, bike-sharing

serves as a substitute for their subway journeys. Overall, these results in dialogue with one

another imply that the overall increase in subway ridership is driven by commuters on the urban

periphery who employ the bike-sharing program as a complement to their subway journeys.

At this point, we have convincing evidence that bike-sharing programs provide a preferred

solution to the first mile, last mile problem, since the increase in ridership across the subway

system is driven by subway stations on the urban periphery. While the results so far are

significant and consistent with our expectations, they only tell half of the story. To form a more

complete understanding of the relationship between bike-sharing and subways and the first mile,

last mile problem, we need to understand the movement patterns of Citi Bike riders. To do

this, I create another regression methodology that exploits the cross-sectional variation across

te Citi Bike stations to examine how ridership throughout the system is influenced by subway

infrastructure.
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Citi Bike Ridership and the First Mile, Last Mile Problem

In this section, I present the results of the first mile, last mile problem analysis with between

estimations discussed in the methodology. Table 5 contains the regression results for the morning

commute and Table 6 for the evening commute. All regressions include bike rack and bike

lane controls, land use controls, and population controls. Since each regression is a between

estimation, time variation has been averaged out and so the only variation reflected in the

coefficients is cross-sectional at the Citi Bike station level. As in the previous sections, all

regressions are performed in R with the plm package and the regression tables are generated in

R with the stargazer package.

I begin the cross-sectional study of the first mile, last mile problem with the number of Citi

Bike origin and destination trips at each station in the morning as the dependent variables.

Table 5: The First Mile: Cross-Sectional Variation Effects on Citi Bike Ridership

Dependent variable:
AM Origins AM Destinations

(1) (2)

Subway Stations within 200m −0.675∗∗ 0.577∗∗
(0.341) (0.291)

Commercial Land Use Share 0.095 −0.113∗∗
(0.064) (0.055)

Residential Land Use Share 1.807∗∗∗ −4.069∗∗∗
(0.682) (0.543)

Observations 332 332
R2 0.502 0.620
Adjusted R2 0.489 0.611

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For the AM Origins regression, the coefficient on ResidentialSharej is positive and significant.

It implies that a 1% increase in residential land use around the station increases the number of

origin Citi Bike Trips from that station by 1.8. This is consistent with our expectations and

suggests a flow of ridership out of residential areas in the morning for more residential areas.

Furthermore, the coefficient on Stationsj is negative and significant. This provides further

evidence of a flow of ridership from residential areas, since fewer riders on average start their
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rides near subway stations.

Now that we have an understanding of where riders begin their trips, we must ask where they

finish. For the AM Destinations regression, the coefficient on Stationsj is positive and significant.

It implies that each additional subway station in a 200m radius of the Citi Bike station increases

the number of destination bike trips to that station by 0.58. This result is consistent with

our expectations for a flow of Citi Bike ridership into subway regions in the morning, as more

subway-dense parts of the city see more ridership in the morning. To further support this claim,

the coefficient on ResidentialSharej is significant and negative which suggests that on average,

fewer morning Citi Bike trips end in residential areas.

These regression results imply a clear flow of ridership out of residential areas into subway

regions in the morning, which is consistent with our expectations from the previous section.

They support the claim that commuters complement subway journeys with bike trips in the

morning and therefore, employ the Citi Bike program to make the first mile of the commute

more efficient.

To continue the study of the first mile, last mile problem and to provide a robustness check

for the methods employed above, I run the same regressions again with Citi Bike trips taken in

the evening.

Table 6: The Last Mile: Cross-Sectional Variation Effects on Citi Bike Ridership

Dependent variable:
PM Origins PM Destinations

(1) (2)

Subway Stations within 200m 1.024∗∗∗ −1.130∗∗∗
(0.299) (0.317)

Commercial Land Use Share −0.112∗∗ 0.062
(0.056) (0.060)

Residential Land Use Share −3.720∗∗∗ 2.509∗∗∗
(0.574) (0.632)

Observations 332 332
R2 0.900 0.888
Adjusted R2 0.897 0.885

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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For the PM Origins regression, the coefficient on Stationsj is positive and significant. It

implies, on average, that each additional subway station within 200m of a Citi Bike station

increases the number of evening origin bike trips from that station by 1. This is consistent

with a flow of Citi Bike ridership out of subway station areas in the evening. Furthermore, the

coefficient on ResidentialSharej is negative and significant, which suggests that more residential

neighborhoods see fewer origin trips in the evening.

Once again, we must ask where commuters finish their evening Citi Bike trips with the same

method as before. For the PM destinations regression, the coefficient on ResidentialSharej is

positive and significant. It implies, on average, that a 1% increase in residential land use around

the a Citi Bike stations increases the number of destination bike trips taken by commuters by

2.5. Furthermore, the coefficient on Stationsj is negative and significant, which suggests that

fewer commuter Citi Bike trips begin in residential areas.

Taken together, the regression results from Table 6 imply that commuters complement

subway journeys with bike trips in the evening. This finding is consistent with our expectations

from the methodology. There is strong evidence to suggest that commuters employ the Citi

Bike program to make the last mile of their commute more efficient in addition to the first mile.

As an additional robustness check, I estimate the regressions in Tables 5 and 6 in which I

convert the Stationsj is binary indicator that takes the value one if there exists at least one

subway station wihin 200m of the Citi Bike station and zero otherwise. The results of this

robustness check are not modestly different with this change in the variable definition.

The regression results in Tables 5 and 6 suggest that the commuting variation in Citi Bike

ridership can be explained as a flow of ridership from residential areas to subway regions in

the morning and from subway regions to residential areas in the evening. This result is robust

to the inclusion of bike ridership activity controls to mitigate possible endogeneity from the

placement of the Citi Bike stations and across multiple definitions of subway infrastructure.

Since the directions of the coefficients on ResidentialSharej and Stationsj are consistent with

our expectations for a flow of commuters into and out of the urban core, the results also suggest

that controlling for non-commuter Citi Bike rides as in the methodology is a suitable method to

isolate the commuting variation of ridership.

27



7. Conclusion

I begin by summarizing each of the major findings and relate them to the literature on bike-

sharing programs. I conclude the section with a policy discussion of the results.

Summary

I found that the overall effect of the Citi Bike program was an increase in ridership across the

subway system and the result was robust across multiple measures of bike-sharing infrastructure

and to the exclusion of Brooklyn-based subway stations. I also found that excluding subway

stations on the urban periphery, the effect of the Citi Bike program becomes a decrease in subway

ridership. This has two important implications for the relationship between subway systems

and bike-sharing programs. It suggests that for residents within the urban core, bike-sharing is

a substitute for subway journeys. It also suggests that the observed increase in subway ridership

due to the Citi Bike program is driven by commuters on the urban periphery who complement

the two modes.

There is additional evidence supporting the claim that commuters complement the modes.

The commuting variation in Citi Bike ridership can be explained as a flow of ridership from

residential areas to subway regions in the morning and from subway regions to residential areas

in the evening. This finding is robust to the inclusion of controls for general bike-ridership

activity to mitigate possible endogeneity from Citi Bike station placement.

The result that commuters in the urban core substitute the modes is consistent with the

findings of Campbell and Brakewood (2017) who employ a similar method and find that the Citi

bike program decreased bus ridership. The same result is consistent with Martin and Shaheen

(2014) who approach the same question with a stated-preferences approach. The implication

that commuters on the urban periphery drive the complementary effects of the modes is also

consistent with their findings. Lastly, the conclusion that subway ridership drives bike-sharing

ridership is consistent with Noland et al. (2016), who find that bike-sharing stations in proximity

to subway stations see more ridership on average than others.

The general finding that commuters complement subway journeys with bike-sharing trips

is consistent with many other papers in the literature including Ting et al. (2015), Graehler

et al. (2019), and Shaheen et al. (2013). The findings of this thesis corroborte the results of

research that employ both stated-preference models and revealed-preference models.
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Further Research

I have created an econometric modal choice framework to understand the interplay between

bike-sharing programs and subway systems that can be generalized into many areas of urban

research. For example, by understanding the substitution effects between the two modes, it

would be interesting to examine the effects of bike-sharing programs on subway crowding. It

would also be effective to extend the analysis to taxi ridership and personal car ridership to form

a nuanced understanding of the bike-sharing effect on carbon emissions. The many different

directions in which this research can be taken are the first steps towards a formal valuation

study of the Citi Bike program.

Policy Implications

This paper’s main contribution the literature is a data-driven method to understanding the

relationship between bike-sharing programs and subways on each leg of the daily commute. By

controlling for non-commuter variation in Citi Bike ridership, we can observe how ridership is

driven by subway station locations.

The implications of this paper are clear from a policy perspective. I have shown on a

micro-level that commuters do complement their subway journeys with bike trips. This supports

the claim that bike-sharing programs can make commutes more efficient by providing commuters

on the urban periphery a solution to the first mile, last mile problem. By lessening the geographic

barriers to urban employment opportunities, bike-sharing programs have the potential to make

urban labor markets more equitable for those who cannot afford to live close to the urban core.
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Appendix A. Data

MTA Subway Data

The data provided on the MTA website are broken into one-week segments disaggregated at

the turnstile level into four-hour increments and require aggregation across stations and across

days. The datasets are very large (~2GB each) which makes downloading each of them as a

.csv file infeasible. Scraping is a big data technique used to quickly work around these memory

restrictions in computers. To gather pre-process the turnstile data, I run a sequence of python

scripts developed by github user piratefsh to scrape the data from the MTA website and convert

the cumulative turnstile data into individual measures of entries and exits.

There are three scripts that must be used to perform the pre-processing on these data. The

first is the turnstile scraper which downloads the raw data into an sqlite3 database, a file from

which the tables containing the turnsitle data can be accessed. After the sqlite3 database is

created, the turnstile cleaner is used to convert the cumulative entries and exits into individual

entry and exit measures. Once this process is complete, the turnstile cleaner is used a second

time to remove any outliers in the dataset which may be due to technical failure in the subway

system or user error. The script defines an outlier as any observation for any turnstile that is

greater than five standard deviations above or below the mean number of entries or exits. Once

the sqlite3 databases are cleaned, they must be converted to .csv files so Stata can read them.

The easiest way to do this is to use SQLite Studio to convert each database from a .db to a .csv

file.

Once the data are imported into Stata, each turnstile observation can be matched to each

subway station using the Remote Unit/Control Area/Station Name Key available on the MTA

website by performing a many-to-one dataset merge. The next pre-processing step is to aggregate

the turnstile data by station and by day. Before this can be done, the date-time string variables

must be converted to date objects. Once this is complete, the aggregation can be done by

collapsing the dataset by each station-day pair. This shrinks the data into a panel dataset where

the individual index is the subway station and the time index is the day. Once the aggregation

process is complete for all time periods, the datasets can be appended to one another. The final

result is the subway ridership panel dataset across all subway stations ranging from January

2011 to December 2014.
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Bike-Sharing Infrastructure Data

Incorporating the Citi Bike data into the subway ridership dataset requires spatial calculations

which can be conveniently performed in QGIS. To do this, the data provided by the NYC

government on subway station locations are the base for creating measures of bike-sharing

infrastructure. Since their data on subway station locations are stored as a shapefile, they can

be imported into QGIS as a geographic layer. The second necessary layer contains the locations

of all Citi-Bike stations and the number of docks across each station. These data can be found

at the Citi Bike live feed. The data are stored as a .json file, which must be converted to a .csv

to be usable. Since the bike-sharing dataset is small, an online .json to .csv converter is the

most convenient method to make the appropriate conversion.

Since the .csv file contains the coordinate pairs of every Citi Bike station, the file can be

imported as a new layer in QGIS over the existing subway station location layer. To calculate

the measures of bike-sharing infrastructure, I create a buffer of 200m around each subway station.

For every subway station, QGIS calculates the number of bike-sharing stations and docks within

the radius and stores the result as a new attribute in the subway station shapefile. The new

shapefile can be exported as a .csv file which can then be matched to the existing station names

within the subway ridership dataset.

Since there is no standardized way of writing the names of subway stations between MTA

dataset and NYC City government dataset, merging the bike-sharing infrastructure data into

the subway ridership by subway station name is impossible. For example, in the GIS shapefile,

the 1st Avenue station is recorded as “1 AVE” whereas in the MTA dataset it is recorded as

“1st Avenue”. While these stations are clearly identical, a computer program like Stata would

not recognize this relationship. Therefore, the subway station names must be matched manually

by a unique index. Then the datasets can be merged by the index as if they were merged by

station.

Citi Bike Origin-Destination Data

The raw Citi Bike data can be downloaded from the Citi Bike website. Each data file is

broken down by month and disaggregated at the ride level. First, the files should be downloaded

and appended to one another in Stata. Once the data are appended, they must be aggregated

by start station-day and end station-day pair to create two station-level panel datasets of Citi
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Bike ridership over time. To do this, the day-time string variables must be converted to day

objects. For the aggregation step, I consider the day of each Citi Bike trip to be the day on

which it begins. After aggregation, each dataset contains the the number of Citi Bike trips that

begin and end at each bike-sharing station across each day from July 1, 2013 to December 31,

2014. To make the panel data as balanced as possible, I drop every observation for which the

origin or destination information are missing.

For the dataset used in the between analysis of the first mile, last mile problem, I import

the Citi Bike station location shapefile into QGIS and count the number of subway stations

that fall within a 200m radius of each Citi Bike station. I use these counts as the main measure

of subway infrastructure. For the Citi Bike data, I aggregate ridership by station in the same

way as above but separate the origin and destination counts into morning and afternoon time

periods. Doing this allows me to assess how Citi Bike ridership patterns vary across stations

throughout the day.

Land Use Data

The cross-sectional analysis of the relationship between bike-sharing and subways requires

extensive GIS processing. The first step is to construct a geographic layer containing the spatial

influence of each bike-sharing station. To do this, I employ the existing bike-sharing station layer

and construct a layer of Voronoi polygons (also known as Thiessen polygons), which partitions

the plane of New York City into regions based on the relative locations of bike-sharing stations.

This can be completed with one command in QGIS. After creating the polygons, they must be

trimmed with the vertex editor to only cover southern Manhattan and Brooklyn.

The land use data emplyed in the analysis come from a variety of sources and therefore,

must be merged in QGIS. The land use data are maintained by the NYC Department of City

Planning and links to their data can be found at their website. For this study, I use their

commercial district, residential district, and manufacturing district geographic datasets They are

available for download as shapefiles which can be imported directly into QGIS. The raw shapefile

contain polygons with numerous overlaps which makes spatial calculations impossible. I work

around this problem by creating a zero-length buffer around each polygon in the shapefiles. This

eliminates the overlaps within and between the polygons.

To incorporate the land use data into the cross-sectional bike-sharing station data, I calculate

the proportion of each Voroni region covered by commercial, residential, and manufacturing
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districts. To do this, I slice the land use polygons along the Voronoi region boundaries for

each land use district shapefile. This divides the land use polygons and prevents them from

overlapping multiple Voronoi regions. To calculate the share of each Voronoi region occupied by

each land use type, I divide each land use area into each Voronoi region area.

The remaining land use data required are included to proxy for general bicycling activity.

To proxy for bicycling activity throughout NYC, I procure shapefiles of bike rack and bike

lane locations. These data are maintained by the NYC Department of Transportation and can

be downloaded from NYC Open Data. These data are provided as shapefiles which can be

imported into QGIS. To incorporate these data into the cross-sectional bike-sharing station

data, I sum the number of bike racks, bike lanes, and length of all bike lanes that intersect each

Voronoi region. After all of the land use data are merged in QGIS, the final layer can be saved

and exported as a .csv file. This file can be imported into stata and merged with the Citi Bike

ridership panel data by station from the previous section.

Demographic Data

I require cross-sectional demographic information to proxy for bike-sharing opportunities,

since more bike-sharing opportunites occur in places with more people. These datasets along

with many other related shapefiles can be found at NYC Open Data, a free online source for

that houses datasets from numerous public organizations. For this thesis, I procure population

data from the 2010 census in a shapefile format maintained by the NYC Department of City

Planning. This file is broken down at the census tract level and can be imported directly into

QGIS and merged into the existing Citi Bike station locations layer.

Weather Data

There is substantial seasonal and weather-related variation in bike-sharing ridership which

makes weather controls necessary for isolating the causal effects of interest. The NOAA maintains

an online database containing daily weather information for all observatories across the country.

The data used in this thesis were gathered by sumbitting a custom historical data request at

the NOAA website. The requests only take a few minutes to process, which makes this a very

convenient method to gather a large volume of weather-related data. The data are sent to an

email of choice in a .csv format, which makes merging the information into the MTA dataset
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simple in Stata. They limit the number of days for which one may download data at one time.

For this project, two custom requests were required to gather weather data spanning from

January 2011 to December 2014.
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