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Introduction

This is a senior thesis so excellent, so famous, so sublime that it
truly needs no introduction.1

1And yet you are currently reading the Introduction. What a paradox.
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CHAPTER 1

Pi, or “Mmm... pie.”

In an episode that first aired on March 11, 2001, Professor Frink
finds himself unable to quiet down a rowdy audience of scientists. To
get their attention, he finally shouts out, “Pi is exactly three!”

We now proceed to disprove this outrageous statement.

Definition. A real number r is transcendental if there does not
exist any polynomial P (x) with integer coefficients such that P (r) = 0.

Theorem 1.1. The number π is transcendental.1

Proof. The proof of this theorem is just slightly beyond the scope
of this thesis. It was first accomplished by Ferdinand von Lindemann
in 1882. Interested readers should see his paper in [2].

�

Theorem 1.2. The number 3 is not transcendental.

Proof. According to our definition above, it is sufficent to find a
polynomial P (x) with all integer coefficients such that P (3) = 0.

Consider P (x) = x132−3x131−2x74+6x73−x2+9. Clearly, P (x) is
a polynomial and its coefficients are all integers. And even a simpleton
can see at a glance that P (3) = 0.

�

Corollary 1.3. The number π is not exactly 3.

Proof. We saw in Theorem 1.1 that π is transcendental and in
Theorem 1.2 that 3 is not transcendental. A number can not be both
transcendental and not transcendental2, so π must not be equal to 3.

�

1Notice how we avoided the terrible sin of beginning a sentence with a number
or symbol.

2This assumes that you believe in the Law of the Excluded Middle. If not, you
may be in for a difficult time ahead.
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1. PI, OR “MMM... PIE.” 2

We shouldn’t think that all the π-related math on The Simpsons is
bogus. For example, in a “Treehouse of Horror” episode from October
30, 1995, we see the following equation, which, as we will learn shortly,
is true.

(1.1) eiπ = −1

Theorem 1.4. For any θ ∈ R, we have eiθ = cos θ + i sin θ.

Proof. Oh for crying out loud, this is so darned obvious I won’t
waste my time, but if you must see a proof, please read [1] or any other
good text on complex analysis.

�

Corollary 1.5. The equation eiπ = −1 is true.

Proof. If we let θ = π in Theorem 1.4, we obtain the following.

eiπ = cosπ + i sinπ = −1 + i · 0 = −1

�

Remark. We note that Equation (1.1) would look so much more
beautiful if 1 were added to both sides to give the following.

eiπ + 1 = 0

This single equation captures what many consider to be the five most
important numbers in mathematics. Good times.



CHAPTER 2

FLT - Fried Lettuce and Tomato Sandwich?

In two episodes (which first aired on October 30, 1995 and Septem-
ber 20, 1998), we see a statement of the form a12 + b12 = c12, where a,
b, and c are natural numbers. These equations are the following.

(2.1) 178212 + 184112 = 192212

(2.2) 398712 + 436512 = 447212

This may call to mind a little-known theorem.

Theorem 2.1 (Fermat’s Last Theorem, or FLT). The equation
xn + yn = zn has no non-zero integer solutions for n > 2.

Proof. I have a marvellous proof of this, but the grant funding to
produce this manual is too small for me to present it here. However,
interested readers may wish to see [3].

�

A consequence of this theorem, of course, is that equations (2.1)
and (2.2) must be incorrect. But how might one determine this without
recourse to FLT? Well, if one had lots of spare time late at night (as
you very well may, dear reader), one could just go ahead and multiply
them out. This author, on the other hand, has a very active social life.
So, we instead recall the following.

Lemma 2.2. The product of any two odd integers is an odd integer.
The product of any two even integers is an even integer.

Proof. Look in your notes or text from Math Camp. This is one
of many similar results we proved back in those good old days.

�

Corollary 2.3. An odd integer raised to any positive integer power
is an odd integer. That is, for odd z ∈ Z, zm is odd for any m ∈ N.

Proof. By induction. Suppose z is any odd integer.
Base case: Since z is odd, we know that z1 = z is odd.
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2. FLT - FRIED LETTUCE AND TOMATO SANDWICH? 4

Inductive step: Suppose zn is odd for some n ∈ N (our inductive
hypothesis). We must show that zn+1 is also odd.

Well,... zn+1=zn · z by basic properties of exponents.
By our inductive hypothesis we know that zn is odd, and we began

by assuming that z is odd. So, zn · z is the product of two odd integers
and is therefore odd by Lemma (2.2).

�

Corollary 2.4. An even integer raised to any positive integer
power is an even integer.

Proof. This proof is nearly identical to the one above. To reduce
the printing cost of this thesis and conserve some of the planet’s natural
resources, we omit it.

�

We now look back to equation (2.1), 178212 +184112 = 192212, and
see that we have an two even integers, 1782 and 1922, raised to posi-
tive integer powers; thus, by Corollary 2.4, each of the results is even.
Similarly, by Corollary 2.3, 184112 is odd.

Now all that remains is to invoke one of the most powerful theorems
known to mankind.

Theorem 2.5. The sum of an even integer and an odd integer is
an odd integer.

Proof. The proof of this theorem is so far beyond the scope of this
thesis as to be nearly incomprehensible to a person of your intellect.
Some of the greatest math students in the history of Colby College are
currently devoting all their talents and energies to a proof, even to the
extent that they have had to reduce their daily hours spent playing
Dungeons and Dragons from sixteen to just two. Fortunately, they are
unemployed and living in their mothers’ basements, so they have little
else to do.

�

By applying Theorem 2.5 to the left-hand side of Equation (2.1),
we see that this left-hand side must be odd. But we already found
above that the right-hand side is even. Thus, this equation cannot be
true.



2. FLT - FRIED LETTUCE AND TOMATO SANDWICH? 5

Alas, this same argument cannot be applied to Equation (2.2).
[Why not?] However, by using a different base for our modular arith-
metic, we can arrive at the same conclusion. This, my loyal and perse-
vering reader, is left on your shoulders. So put away your video games
and your crazy rock and roll records and get to work, you slacker.



Appendix A. For Very Interested Readers Only

I had my appendix removed when I was a little boy, so I cannot
include it here. You are free to visit my office to see it, though; it’s in
a jar on the shelf.
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