Lesson Three: Proclamations and Proofs

Definition. An integer m is even if m = 2j where j is an integer.

Theorem 1. The sum of any two even integers is an even integer.

Proof. Suppose m and n are even integers.

By the definition of even, m = 2j and n = 2k where j and k are integers. Therefore, m + n = 2j + 2k = 2(j + k).

Since the integers are closed under addition, j + k is also an integer.

So, m+n is twice another integer (j+k), meaning m+n is even, as desired. \Box

Theorem 2. The equation $x^n + y^n = z^n$ has no non-zero integer solutions for n > 2.

Proof. I have a marvellous proof of this, but the page is too small to contain it. \Box

Theorem 3. The number 8675309 is prime.

Proof. Just ask Jenny.

Definition. A mathematician is a device for turning coffee into theorems. [attributed to Paul Erdős]

Note. Begin laughing now.

Exercise Three: Proclamations and Proofs

Theorem 1. The product of any two even integers is an even integer.

Proof. [Try this on your own before looking at the solutions.]

Definition. An integer k is odd if k = 2j + 1 where j is an integer.

Theorem 2. The sum of any two odd integers is an even integer.

Proof. [Try this on your own before looking at the solutions.]

Theorem 3. Every even integer greater than two is the sum of two primes. Proof. [Let us know right away if you find a proof to this one!] \Box