Lesson Five: Alignment, Part Two - Labels and Annotation

Suppose that f(x) = 1/x. Compute f'(x) using the limit definition of the derivative.

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ (1)(2)

This is the limit definition.

 $= \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$ $= \lim_{h \to 0} \frac{\frac{x}{(x+h)(x)} - \frac{x+h}{(x+h)(x)}}{h}$ $\langle \mathbf{a} \rangle$

(3)
$$= \lim_{h \to 0} \frac{\frac{1}{x - (x+h)}}{h}$$

(4)
$$= \lim_{h \to 0} \frac{\overline{(x+h)(x)}}{h}$$

(5)
$$= \lim_{h \to 0} \frac{\frac{-n}{(x+h)(x)}}{h}$$

(6)
$$= \lim_{h \to 0} \frac{(x+h)(x)}{1}$$
 Cancel the
(7)
$$= \frac{-1}{(x)(x)}$$

$$(8) \qquad \qquad = -\frac{1}{x^2}$$

Get a common denominator.

Combine the fractions.

Cancel the x's.

Cancel the
$$h$$
's.

Note that in (1), some professors will (properly!) like you to include the phrase "provided this limit exists."

The key algebra step was to get a common denominator in (3). A common error is to forget the parentheses around the x + h in (4).

Exercise Five: Alignment, Part Two - Labels and Annotation

Claim. The real number 2 is equal to the real number 1.

Proof.

(1)	a = b	Suppose $a, b \in \mathbb{R}$ are non-zero and that $a = b$.
(2)	$a^2 = ab$	What's the harm in multiplying each side by a ?
(3)	$a^2 - b^2 = ab - b^2$	And it's fair to subtract b^2 from each side, no?
(4)	(a-b)(a+b) = b(a-b)	Just factoring. Nothing fishy here.
(5)	a + b = b	Cancel the factor $(a - b)$ from each side.
(6)	b + b = b	Recall from (1) that $a = b$, so we replace a by b .
(7)	2b = b	Who could possibly object to this?
(8)	2 = 1	In (1) we defined $b \neq 0$, so we can divide by b .