Lesson Nine: Arrows and Functions

We have a wide range of arrows in our quiver, a small sample of which appears below.

 $\Rightarrow \ \leftarrow \ \longleftarrow \ \uparrow \ \Downarrow \ \swarrow \ \leftrightarrow \ \leftrightarrow$

Definition. A function $f: A \to B$ is *injective* or *one-to-one* if and only if whenever $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Notation. If f is injective, we write $f: A \xrightarrow{1-1} B$.

Definition. A function $f: A \to B$ is *surjective* or *onto* if and only if for every $b \in B$, there exists $a \in A$ such that f(a) = b.

Notation. If f is surjective, we write $f: A \xrightarrow[]{\text{onto}} B$.

Some books use the symbol $\stackrel{\text{def}}{=}$ when defining a function. For instance, we have the **identity function** on a set A, which sends each element of A to itself.

 $I_A(x) \stackrel{\text{def}}{=} x$

Exercise Nine: Arrows and Functions

Definition. A function $f: A \to B$ is bijective or a one-to-one correspondence if and only if f is injective and surjective.

Notation. If f is a bijection, we write $f: A \xrightarrow[onto]{1-1} B$.

Claim 1. The function $f: \mathbb{R} \to \mathbb{R}^+$ given by $f(x) = x^4 + 1$ is not injective.

Proof. We must show that there exist $a_1, a_2 \in \mathbb{R}$ such that $f(a_1) = f(a_2)$ but $a_1 \neq a_2$.

Choose $a_1 = 1$ and $a_2 = -1$.

Then $f(a_1) = 2$ and $f(a_2) = 2$ but $a_1 \neq a_2$, so f is not injective.

Claim 2. The function $f \colon \mathbb{R} \to \mathbb{R}$ given by f(x) = 3x + 1 is surjective.

Proof. We must show that for every $b \in \mathbb{R}$ [the codomain] there exists $a \in \mathbb{R}$ [the domain] such that f(a) = b.

Pick any $b \in \mathbb{R}$.

Let a = (b - 1)/3.

Since $b \in \mathbb{R}$ and because the reals are closed under subtraction and non-zero division, we know that $(b-1)/3 \in \mathbb{R}$, *i.e.*, *a* is in the domain of *f*.

Furthermore,

$$f(a) = f\left(\frac{b-1}{3}\right)$$
$$= 3 \cdot \frac{b-1}{3} + 1$$
$$= b - 1 + 1$$
$$= b$$

as desired.