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IL NUOVO CIMENTO Vor. 898, N. 1 11 Settembre 1985

Solution of the Basic Problems of Electredynamics in the
Group-Space Formulation (*). |

A. O. BaruT
Department of Physics, University of Colorado - Boulder, CO 80309

S. MALIN
Department of Physics, Colgate University - Hamilton, NY 13346

M. SEMON

Department of Physics, Bates College - Lewiston, ME 04240

(ricevuto il 4 Aprile 1985)

Summary. — The question is pursued of whether there exists a complete
alternate formulation of classical electrodynamics in terms of a single
scalar function, which may then lead to a new formulation of quantum
electrodynamics. Using harmonic analysis and spin-weighted spherical har-
monics we study such a theory and solve it for three deliberately simple
but echaracteristic problems: point charges, current loops and antennae.
The connection between the field strength and potential formulations is
established, as is the relation of this theory to the conventional one uging
vector spherical harmonics.

PACS. 03.50.De — Maxwell theory: general mathematical aspects.

1. — Introduection.

As the history of physies shows, new formulations of existing theories
extend the scope of these theories and provide deeper insight into the phenomena

(*) Supported in part by the Colgate Research Council.
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SOLUTION OF THE BASIC PROBLEMS OF ELECTRODYNAMICS ETC. 65

they describe. Well-known examples of this are the Newtonian, Lagrangian
and Hamiltonian formulations of classical mechanies, and the Schrddinger,
Heisenberg and Feynman formulations of quantum mechanics. Another
important example is provided by electrodynamics. In this case, the theory
can be formulated in terms of the field strengths E and B, or in terms of the
potentials 4,. The potential formulation is prefered in quantum theory and
quantum field theory because the coupling of the electromagnetic field to the
matter field ¥ is easily formulated in terms of the 4, and because of the oc-
currence of gauge-covariant derivatives (0 — edy). The 4, themselves, how-
ever, contain unwanted degrees of freedom and thus overdetermine the electro-
magnetic field since different potentials may describe the same physical situation.
The field strengths, on the other hand, seem to underdetermine the electro-
magnetic field since, as the Aharonov-Bohm effect (~*) shows, phase factors
of the form exp [(iq/ﬁc)§Au daz*] are observable in multiple connected regions
where E and B vanish (3). The description of such phenomena in terms of field
strengths is at least very complicated. Thus it continues to be important to
gearch for new formulations of electrodynamies that will represent, perhaps
more faithfully, the physical phenomena, or at least simplify the descrip-
tion.

It has been known for a long time that Maxwell’s equations can be rewritten
in terms of W = E + iB as a Dirac-like equation. This equation seems to be
rediscovered many times (2). But W here is a spinorlike quantity. We are
interested in a scalar representation of the electromagnetic field. Such a re-
presentation has been obtained when the longitudinal part of 4 is eliminated ().
Another scalar representation, which we study here, is obtained by ap-
plying the method of writing vector and tensor fields as functions over
the group SU,(¢). Then, by the methods of harmonic analysis, the fields can
be expanded in the basis provided by the matrix elements of the irreducible
representations of SU,. The underlying mathematics is well known and has
been used in generalrelativity (?), as well as in multipole expansions (*). When

) Y. Auaronov and D. Boum: Phys. Rev., 115, 485 (1959).

) P. Weiss: Proc. B. Soc. London, Ser. A, 169, 119 (1938).
(3) T.T. Wu and C.N. Yaxg: Phys. Rev., 12, 3845 (1975).

) L. SILBERSTEIN: Ann. Phys. (N. ¥.), 24, 783 (1907); Philos. Mag., 23, 790 (1912);
J. L. LoMoxT: Phys. Rev., 111, 1710 (1958).

(*) H.S. Greex and E. WoLr: Proc. Phys. Soe. London, Sect. A, 66, 1129 (1953);
74, 269 (1959); P. RoMan: Proe. Phys. Soc. London, Sect. A, T4, 281 (1959); Acta Phys.
Hung., 4, 209 (1955).

(8) M. Carmeri: J. Math. Phys. (N. Y.), 10, 569 (1969).

() E.T. NewumaN and R. Pexrose: J. Math. Phys., 7, 863 (1966); J. GOLDBERG,
J. MacFarrLane, E.T. NEwmaN, F. Rourrice and E.C.C. Suparsman: J. Math.
Phys., 8, 2155 (1967).

(& J.J.C. Scawio: Am. J. Phys., 45, 173 (1977).

§ — Il Nuovo Cimenio B.
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this method is applied to the radial and radial-helicity components of (E -+ iB),
a simplification occurs and the problem of solving Maxwell’s equations reduces
to that of solving one partial differential equation for one complex scalar fune-
tion (»19). Since the number of independent variables (real) is equal to the
number of degrees of freedom, the quantization of the electromagnetic field
free from gauge problems becomes possible (*). Thus this alternative formula-
tion which, at least formally, seems to better represent the electromagnetic
field, should be further studied.

The same method has been used in other areas. In 1974 it was used to
reformulate the linearized equations of general relativity and was shown to
result in a gauge-free quantization of the linearized gravitational field ().
More recently, it has led a new Hilbert space for quantum gravity that is
also applicable to a wide range of Riemannian space-times ('2-1%). It has been
used to reformulate electromagnetic-scattering problems (%), the field equa-
tions of the Weyl and Dirac fields (*¢), and has also been applied to the equa-
tions for the A,. In this latter case one again obtains a single differential
equation for one complex scalar function, and the number of independent
real variables is equal to the number of degrees of freedom (1718), Although
the gauge choice is not completely eliminated, the Lorentz gauge emerges as
the prefered one, just as it does in the covariant Green’s function method of
field theory, and a quantization of the electromagnetic field results that is free
of all gauge problems (8).

The purpose of the present paper is to unify and complete the group space
formulation of classical electrodynamics by connecting the field strength and
potential approaches, both with sources, and to present the generalsolutions
for both. The general solutions are derived in sect. 2 and 3. In sect. 4 the
connection of the two formulations is given. In sect. 5 we illustrate the general
solution for three basic sources of electrodynamics: a point charge, a stationary
current loop and a dipole antenna. These are simple prototypes of many other
gources. As a step towards the reformulation of the Maxwell-Dirac equations
of quantum electrodynamics, we indicate, ab the end of sect. 2, how the har-
monic analysis can be extended to the remaining (r, t) variables.

(®) M. CarmMELL: J. Math. Phys., 10, 1699 (1969).
(1) M. CarMELI: Nuove Cimenio B, 67, 103 (1970).
) 8. Mavin: Phys. Rev. D, 8, 2338 (1974).
) M. CarMELI: Nuovo Cimenio B, 55, 89 (1980).
(1*) M. CaArRMELI and 5. MALIN: Nuove Cimenio B, 66, 164 (1981).
) 8. MaLin: Physica (Utrecht) A, 114, 154 (1982).
) A.O. Barur, M. CarmELI and 5. MALIN: Ann. Phys. (N. Y.), 77, 454 (1973).
(%) 8. Marin: J. Math. Phys. (N. ¥.), 16, 679 (1975).
(') A.O. Barur and 8. MavriN: Found. Phys., 5, 375 (1975).
(18) A.O. Barvut, S. Matax and M. SemoN: Found. Phys., 12, 521 (1982).

T M“.Wk..,,m,g.1



SOLUTION OF THE BASIC PROBLEMS OF ELECTRODYNAMICS ETC. 07

2. — Solving for the electromagnetic potential in the SU; basis.

In two previous papers (*»1?) we expanded the electromagnetic potentials
in a basis of functions provided by the matrix elements of the irreducible re-
presentations of SU,, and derived the differential equations determining the
expansion coefficients. In this section we solve these equations and show ex-
plicitly how the expansion coefficients are determined from the sources, both
in static and time-varying cases.

In keeping with past notation (*"'%) we represent the scalar part of the
electromagnetic potential by A4, and the radial part by A . If we define

(2.1) A, =— (A,+idg) V2,

then, as we show in appendix A, (£id.) are the components of the electro-

magnetic potential along the positive and negative (radial) helicity vectors

(8,18, )A/2. Moreover, as was discussed in ref. (*), we can define an angle ¢,

describing the orientation of the helicity vectors in the plane perpendicuiar to .
Given these definitions, we introduce four functions:

(2.2) § = Aq,

(2.3) £, =A

and

(2.4) £, =A, exp [Tips].

As was discussed in ref. (8), these functions have particularly simple ex-
pansions in the basis provided by the matrix elements T7  of the irreducible
representations of SU,:

8

j

(2.5) &= 2 at (b, ) T, (u) ,
i=0 m=—
©

(2.6) => > a.,,,,,(t, a0
=0 m=~—

and

@.1) Eo=3 3yt ) T pw).

The expansion coefficients in egs. (2.5)-(2.7) are found from the orthogonality
relations

(2.8) f Qu T ()T ) = (2] + 170,008
where du is the invariant measure over SU,:

(2.9) du = (167)~! sin 6 d6 de, de,,
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@1 = 7|2 — @, and the limits of integration are 0 <0<, 0 <@, <4m, 0<Pa< 2.
Thus

(2.10) & = (2j+1) f £t v, u) T2, (w)* du,
(2.11) al = (2 +1) f £(2, 7, w) T8 (u)*du
and

(2.12) ol = (2 +1) f £ty 7y u) Ty (w) du.

Similarly we can expand the charge density ¢ and the current density J as

@ i

(2.13) or, )= > ob.(t, )T}, (u),
=0 m=—§

(2.14) J,(ry 1) = z z (8, 1) T8 (w)

and o

(2.15) Jur, t) = — (J,Lid,) exp [Fig,)[V2,

(2.16) J(r,t) = J. exp [Tigs],

(2.17) Jir ) =3 5 Tty 1) Thy o).
§=1 m=—j}

The expansion coefficients are found from the equations

(2.18) ol = (2 +1) f olt, vy, w) TP _(u)*du,
(2.19) g = (2 + 1) f J (t, v, u) T (u)* du
and

(2.20) Ty = (25 + 1) | Tty 7, w) T4, (w)* Q.

We showed previously that, when the electromagnetic potential is restricted
to the Lorentz gauge, the expansion coefficients are determined from differential
equations () in the remaining (¢, #)-variables:

0 ¢ 1
eon g+ 1 0 = reh,
| 0 ¢? i(j -1 . . o, .
e |- ’('";t“ ] k) = #0042 5 080
a3 | __
e[St M k) = bt VT Dl

when Maxwell’s equations are expressed in Heaviside-Lorentz units with ¢ = 1.
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The solutions to these equations must further satisfy the Lorentz condition (*%$)

o .., 19 , G+ 1 .
e20 S+ 1L v + P SD — a=0.

If we wish to find the electromagnetic potential when no sources are present,
then eqs. (2.21)-(2.23) show that we need only to solve one partial differential
equation, eq. (2.21), for one complex-valued function (rd], ). The other three
expansion coefficients are then determined from this one by eqs. (2.22)-(2.24}).
Thus the problem of solving for the electromagnetic potential in the Lorentz
gauge reduces to that of solving for one complex sealar function &, (¥*). This
demonstrates the formal advantage of the SU, approach: namely that the
number of independent real variables is equal to the number of degrees of
freedom. We will see in the next section that the same situation holds when
the field (E 4 iB) is expanded in the 7?7  basis (**). Thus the SU, formulation
provides a way to quantize the free electromagnetic field, in terms of the field
strengths themselves or the potentials, that is free of spurious degrees of
freedom.

If sources are present, then it is convenient to recast eqs. (2.21)-(2.23) as
integral equations from which the expansion coefficients can be determined
more readily. Because any time-dependent source ean be expanded by using
a Fourier analysis, it is sufficient to consider a single Fourier component with
frequency w:

(2.25) olr, 1) = o(r) exp [— iwt],
(2.26) J(r, t) = J(r) exp [— iwt],

where, as usual, the physical situation is obtained by taking real parts. As-
suming the sources have the above time dependence implies that the potentials
have the same time dependence:

@ty r) = d}, (r) exp [— twl],
al (t,7) =al,(r)exp[— iot],
af,:l,m(t, r) = &, . (r) exp [— iwi]

and that the spatial parts are determined by the equations

‘ F d® iG+11, .
o o ter =TT ) = — rotw,
- 2 - - -~
(28) [0 4or D rag) = — ot o 2icrt,
-dz 19 1 ] ey 1
(2.29) a}—z "+- w? — (?—;L—..“l (r“jihm) = — TJgtl,m —_ ’\/29(? _l__ l)a%m/,r ,
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together with the subsidiary Lorentz condition
a0 —iontht 2 2 (et + D et =0

The differential equations (2.27)-(2.29), plus the boundary conditions of
finiteness at the origin and outgoing waves at infinity, are equivalent to the
integral equations

2.81) @& (r) =— ¢ f ar’ g,(r, ¥y ¥ ol ('),
0

(2.32) ol (r) =-— r‘zfdr' g,(r, N2 d: (') — 2iwr' &, ()],
o

(2.33)  alymlr) = — 1= [@r' gy, ¥ Tha,nlr") -+ VETG F 1) g} ']
0

For sources oscillating with frequency w the Green’s functions satisfying the
boundary conditions can be written as (1)

(2.34) gi(ry ') = — w5, (cr) b (wr,),
while for time-independent sources (w = 0) eq. (2.34) reduces to
(2.35) gilry ') = — (2§ + 1) i r

with r. and r, being, respectively, the smaller and larger of » and ». The funec-
tions § and A" are the Riccati-Bessel and Riceati-Flankel functions

(2-36) Jilz) = 2jilz) = (n2)2)4,44(2) ,

(2.37) _}(2—1%%5!—! (a8 2 —0),
(2.38) — sin (2 — In/2) (as & — c0)
and

(2.39) b (2) = #iy(2) + i3,(2) ,

(2.40) (21— 1)1 (as 2z — 0),
(2.41) —exp [i(z — I7/2)] (as 2z — oo).

(%) J. R. TAYLOR: Scattering Theory (Wiley, New York, N.Y., 1872).

S S——
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Equations (2.31)-(2.33), together with the Green’s functions (2.34) and (2.35),
give the explicit solutions for the expansion coefficients for any source dis-
tribution.

Before ending this seetion, we note that in many cases of interest the ob-
servation point lies outside the sources and thus eqs. (2.31)-(2.33) can be written
as

[se]

+ ~
242 ) =" (a0 o'y s,
:
j ﬁ+ 7‘0 Fa 4 ! ra
(2.43) al(r) = ’a()‘;f) dr' 3, (") [P 2 (') — 2icor’ & ()],
:,
i ﬁ;f(ayr) 3 2 INFul TS
(244) () = 2 | @ Giler )Y Thnle') 4+ V21 -+ 1t
o

0

when the sources are oscillating with frequency w, and for time-independent
sources, as

(2458) @ () = (2 + 1)ty f ar' gl (r),
(246)  ah() = (2 + 1 e PRI,
0
(247)  dhoalr) = (2 + 17 @ [ Thanl) + V2] F Dbt r]

Finally, in the radiation zone (wr>1, or >j(j + 1)), the function A* can be
replaced in eqgs. (2.42)-(2.44) by its asymptotic form (2.41).

Remark. The operators

. o
,?i:r[na%+ ’”Il) iwz] and T:—i[r%—{—l]
generate a §U, , dynamical group. Thus, in egs. (2.27)-(2.29), we could perform
another harmonic analysis in the remaining variables (r, ) using the irreducible
representations of SU,,, in the same spirit as the harmonic analysis in the
(0, p) variables. We then would use the unitary irreducible representations
of 8U,, on the r-variable instead of the Green’s function method used here to
establish contact with the standard results.
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3. — Solving for (E + iB) in the ST, basis.

In 1970 CARMELI () expanded the radial and radial-helicity components
of (E - iB) in the ST, basis and derived the differential equations determining
the expansion cocfficients. In this section we review his work and recast the
differential equations for the expansion coefficients into integral equations.
We also establish the connection between the expansion coefficients of (E + ¢B)
in the SU, basis and the more conventional multipole coefficients associated
with the vector spherical harmonics.

In keeping with with Carmeli’s notation we define ¥= (E -|- iB) and

(3.1) Ne="V,, ne=— (V,1iV,) exp [Fipl/v2.

Because of the way they are defined, the eta-functions ean be expanded in the
SU, basis as

® g
(3.2) Ny = E Z O‘jom(t: r) T;m(u) '
I=0 m=—j%
«© i
(3.3) Ne= 2 2 oy ()T (u)

=1 m=—4§

with expansion coefficients given by
(3.4) Wy mlty 7) = (2] + 1) [yft, 7, ) T (w)* du,
(3.5) o, (1, 7) = (2 + 1) f Mty 7y w) T, (0)* du.

When expansions (3.2) and (3.3) are substituted into Maxwell’s equations with
sources (expressed in Heaviside-Lorentz units with e¢ = 1), the expansion coef-
ficients are determined by the equations

(3.6) [ge__”_ai :’(? + 1)] (1‘20(’. ) —

ot Ore g2 m/

0 0 , . ——
- {(5; + é’i) Tz(@ﬁm =+ J(])m) + VQ?(? + 1)Tng:1,m}

(3.7) or,m =V 2i(i + 1) {; (55 ?5;) () £ 7(0hm - sz)} :

R B TR Y
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when j =1,2,8,..; m =—j, —j+1,...,j; and

0
(5.8) 2 ahy=— Th,

O s 0 2 0
(3.9) ar (1" 0tg0) = 1" Qoo

when j =m = 0.

If we wish to find (E -+ ¢B) when no sources are present, then eqs. (3.6)
and (3.7) show that the functions o, completely determine the Oty y 96 The
radial component of (E - {B) completely determines the radial helicity com-
ponents. Thus the problem of solving Maxwell’s equations reduces to that of
finding one scalar complex function r,. As mentioned in sect. 2, this shows
that in the 8T, approach the number of independent variables is equal to the
actual number of degrees of freedom and provides a way to quantize the field
strengths themselves that is entirely gauge free (%).

Tf sources are present, we can assume they have the time dependence (2.25)
and (2.26), in which case the solution to eq. (3.6) becomes

o0

010) st = [a7 a1 [ F i0)abat S +VEHG 1 T

0

with

B11) o= — (2701 + 117 1 (£ 55 - 0) (%) T rlehn 7).

The Green’s function used in eq. (3.10) is again that of eq. (2.34) for time-de-
pendent sources and (2.35) for time-independent sources.

For observation points outside the sources eqs. (3.10) and (3.11) can be
written as

312)  abatr) =" i fdr’i,-(wr') {(a% ¥ z‘w)r”(ezm = ) +V2i( + 1)fr’Jzt1,,,.}
and
(3.13) Loy m(?) = — [2§(F + 1)]7Hr (:l: % + 'iw) (r*ogm) -

If the observation point lies in the radiation zone, A+ can be replaced by its
asymptotic form (2.41).
For time-independent sources and observation points lying outside the
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source region, eq. (3.10) and (3.11) can be written as *

]

(3.14)  adnlr) = (2§ + 1)7Hr 2 f dr'y {a% r*(0dm £ ) +V2(j + 1) szu,m}
0
and .

(3.15) (r) = T 120+ 1T 2 (% )

It is worth noting that eq. (3.12) can be written in a form more suitable
for applications by making two modifications. First, since the Riccati-Bessel
funetion 7 is zero at the origin and the sources are finite, we can integrate by
parts to show that

[=-] @0

1) @) o ek = — [0 e e dior)

0 0

Second, we can incorporate the restriction that conservation of current
(3.17) V-J -+ 0pjot =0

places on the expansion coefficients. Proceding in the same way as the deriva-
tion of (30) of ref. (*8), we find

(3.18) — 1Ty, + () + ]/ [J+1 m—Jdlim] = 0.

Using eqs. (3.18) and (3.16) in eq. (3.12) we further obtain

(3.19) o, (r) = — Bt fdr’ {(r Otm) a"’ér ) + dwr§ (wr) T, —

wr?
— ' §(cor ')V

Thus the expansion coefficients for (E 4 ¢B) in the SU, basis are determined
by egs. (3.19) and (3.15) when the observation point is outside of the sources.

Equation (3.19) is quite similar to the standard expressions for the electric-
and magnetic-multipole coefficients which oceur when the fields are expanded
in vector spherical harmonics (). Indeed, by using definitions (2.36) and

1]

[Jfl-l.m Ji—l,m]} -

(20) J.D. Jackson: Classical Electrodynamics (Wiley, New York, N.Y., 1975).



SOLUTION OF THE BASIC PROBLEMS OF ELECTRODYNAMICS ETC. 75

(2.39) and the expression

VerxJ) = —r-VxJ = % (E_dJy - Eodo),

where (1°)

KT = [(j4m -+ 1)§FmET,,
with

. c . 0 0
K.=exp[F "Pz](i Gtg0§@+@§é¥ 0086068791)’

the relation to multipole coefficients is easily established. An alternative
and simpler way is to note that the electrie- and magnetic-multipole coef-
ficients are defined on p. 747 of ref. (%) to be

(3.20) ay iy mYP(wr) = o + 117 [ThrB, 42
and
(3.21) Gy, MAL(r) = — olj(j + 11T}, rE, 40

for observation points outside the sources. Equations (3.20) and (3.21) can be
combined to show that

(3.22) VAU ED) 0 — ) = f V709 .

Using expansion (3.2) and the result (**)

4x
J jr— —— .
(3.23) T = sz 1 Yim

in eq. (3.22) we get finally

N 14 R T By (o)
(8.24) o (1) = o Vi) =

(ag— t0y) ,

which is the desired relation between the two sets of expansion coefficients.

4. — Connecting the field strength and potential expansions in the SU, basis.

In sect. 2 and 3 we discussed how the field strengths (E -+ iB) and the
potentials (4,, 4) could be expanded in the SU, basis and found the integral
equations determining the expansion coefficients. In this section we relate the
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two approaches, so that, once the expansion coefficients for the potentials are
known, the expansion coefficients for the field strengths can be determined
from them directly.

We begin by deriving an expression for ! in terms of the @’ . The defining
relations for the potentials are

(4.1) B=VxAd
and

oA
(4.2) E = _VA"_W'

Since «! is the expansion coefficient for the radial component of (E - iB),
we first find the radial components of eqs. (4.10) and (4.2) and then express
them in terms of the &-functions. From eq. (4.2) and (2.2), (2.3) we have

o o

(4.3) B=——f—=

&
and from eq. (4.1) and (2.4)

i

(4.4) B, — 75

(E_£s+ KL 6),

where the K, operators are defined after eq. (3.19). Equations (4.3) and (4.4)
together imply that

c&, &, 1
(4.5) m:—g—é—@ﬂM@+K@+

Substituting expansion (2.5)-(2.7) and (3.2) into eq. (4.5} and equating coef-
ficients gives the desired result

;o |945, | Oap, 6+ 1) (alm+ 0lim)
(4.6) “om——"{*ajr‘l“ﬁ—'{-l/ 5 }

o

The expansion coefficients “il,m can be determined from eq. (4.6) and (3.9)
or from eq. (4.1) and (4.2) The first method will relate the expansion coef-
ficients for the radial helicity components of (E -+ ¢B) to the expansion coef-
ficients for the potentials and the sources, while the second will invelve only
the potentials. To pursue the second method, we note that

1
(4.7) e T G {(By &= iBp) + i(B, £ iBp)} exp [+ 4] .
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Taking angular components of (4.1) and (4.2), we find

1 . . 1 0§,
(4.8) ~3 (B, L il) exp [F ip.] = & V2 K, §— E)_i
and
1 . . 1090 1
@9) = 5Byt iBy exp[F ipd = £ g 06 T 75 K.&.

Substituting (4.8) and (4.9) into (4.7) and using the appropriate expansions
gives the desired result

1 g 0 iG + 1) (thn £ G
(4.10) ey = p (:i: B —52) (raky,m) + V 9 ( " ) .

Equations (4.6) and (4.10) allow the expansion coefficients for the field
strengths to be computed directly from the expansion cocfficients for the po-
tentials once the latter are known. There is still some gauge freedom left in
eqs. (4.6) and (4.10), namely

. oA o4

a’(’)m'—)d{)m—l_ﬁ'y a{)méa’(j)m—'a_y’
od , o4

Ta’zi:l,m — ra'zf:m + (-8_7' '_"l: E)

with

e @y,
DA=(aé—éﬁ)A_0.

5. — Solving dynamical problems with sources.

We illustrate now the formalism developed in sect 2-4 by solving for the
fields created by three fundamental sources: the electrostatic point charge
_—the fundamental problem of electrostatics, the circular loop carrying a steady
current—the fundamental problem of magnetostatics, and the center-fed,
linear antenna—a fundamental problem in radiation theory.

A) The electrostatic point charge. Without loss of generality we assume
that our electric charge g is located at the origin. In this case the source den-
gities are

o(r) = ¢d(r)/4mr®, J(r)=0.
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Our first step in applying the SU, formalism is to expand these sources in
the SU, basis and determine the expansion coefficients. Using eqs. (2.8),
(2.18) and (3.23), we find that

(5.1) o) = qO(r) 8,00, /4mr®

and Jj =dJL, . =0 for all j, m.
To find the electric and magnetic fields created by this source, we use eqs. (3.8)
and (3.9) which imply that

g, = qfdmr®.

Thus, using eq. (3.23), we find

©
(5.2) (E+4iB), =Y > ol T = ol T0 = q/dnr*.
g=0 m=—j
Hence
(6.3) B, = ql/dare.

All other components of the field strengths are zero. This is the familiar ex-
pression for the electric field from a point charge ¢ located at the origin, ex-
pressed in Heaviside-Lorentz units.

We can also find the potential created by this source and use our connection
formulae to derive the field strengths. Using eqs. (2.45)-(2.47), we find

(5.4} a3, = 90,40,/ 47

and ! = al, ,, == 0 for all j and m. Putting these into eqs. (2.5)-(2.7) implies
that

(6.5) Ay = q/dnr

and A, = A, = 0. This is just the scalar potential from a point charge

located at the origin, expressed in Heaviside-Lorentz units. Finally, using
the connection formmlae (4.6), we find

5.6) 8o = — - (gldsr) = gl

a8 we found directly in eq. (5.2).

B) The circular current loop. As our next example we consider a circulax
current loop of radius @, lying in the (x, y)-plane centered at the origin, car-
rying a steady current I. The charge density g is zero as are all the components

o
5
&
i
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of the current density J except (see ref. (*), p. 177 )

(6.7) J, == Id(cos 6)6(r — a)/a.

Using this in eq. (2.15), we find

(5.8) J, = — Id(cos 0) 8(r — a) exp [Fipl/V2a.

By expanding this source distribution in the SU, basis according to eq.
(2.17) the expansion coefficients are found from eq. (2.20) to be

, @+ 1Ir—a)
(6.9 Jmm=""Tgn T8

1 an 27
-fd(cos B)Id¢lfd¢2 8(cos ) exp [F i@,] Thy m(n)* .
—1 0 0
From eqs. (A.17) and (A.18) we know that Til_m is proportional to exp [— imep;,]
and exp [Tip,], thus the integral over ¢, gives a factor of 470 ,, (reflecting the
cylindrical symmetry of the source), the integral over g, gives a factor of 2z,
and the integral over 6 forces § = x/2. Thus, using eqgs. (A.24) and (A.25),
we find
(27 + 1

(5.10) Thn— @D 5 s(r— a)Py0),

2V2j(j + 1)a

where Pj(x) is the usual associated Legendre polynomial. Py(0) is evaluated
on p. 179 of ref. (20). It is zero if j is even (reflecting the parity of the source)
and, for j odd, it is given by

(— 1)1 '(n + 3/2)
Tim —~1)I'(3[2) ’

(5.11) Pi(0) =

where j = 2n + 1 and # =0, 1, 2,.... Equation (5.11) can be simplified by
using standard properties of the gamma-function to read

_ (= 1)en + Ut

(6.12) frtal0) LS

for n=0,1,2,....
To find the electromagnetic potential when r > a, we use egs. (5.10) in (2.74):

Ia a\itl
5.13 o= L”i_(u) P!(0).
>4 RV ETAC M
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All the other expansion coefficients are zero. Putting (5.13) into (2.7), we find

6:14) ==y penFip) 3 ol (O p o).

I
22 = @n F1)e2n £ 2)

In this equation we have used eq. (A. 24) from the appendix to express T
in terms of the associated Legendre polynomials. Equations (5.12) and (2.4)
give then the desired result

(5.15) A,= —-Z—a Z(

n=0

1)7(2n — 1)1 1
(n

a\2ntl ,
Tree (‘) Py, y1(cos 0),

¥

Wwhich is eq. (5.46) of ref. (%) expressed in Heaviside-Lorentz units with ¢ — 1.
(The unit conversion is accomplished by replacing ¢! in Gaussian units by -
(4v0)1 ().) ;

To find the electromagnetic-field strengths from this potential, we use our
conversion formulae (4.6) and (4.10), Using eqs. (6.13) and (4.6), we find

— T [a\2n+2
(5.16) A= (5 dunPlun@
for n = 0,1, 2, .... Putting this in .(3.2) gives
Ia 2 ( "(2n - 1)1t a2t
(3.17) B — 1 2 1) ;W ) " s Pinia(c080)
n=0 *

Again, replacing ¢~ by (4ne)~* in eq. (5.46) of ref. (%), we see that (5.17) is the
standard expression for B, in Heaviside-Lorentz units with ¢ = 1.

To find the angular components of the field strengths, we use eqs. (4.10)
and (5.13):

n i e T
(5.18) “3:1-,’-(:)[ =+ 2\/§ 1/2% L pants -P2n+1(0) ’

which implies that

I Dn2n + 1)1 1 fa\en
(5'19) ?7:I:— :F 4\/ exp [:F zq’z]%o (n + 1)! F(";‘) 13214'!'1(0’OS 6) .

To find the ¥ and B fields, we note that
(6.20) (VotiVo) = (Eo'F Bs) + i(Byp+ o) .

Comparing eqs. (3.1) and (5.19) shows that B, — Hy = 0 and thus

Ia2°" *2n + 1) 1 fa\2 _,
(5'21) Bﬂ 4 n%) 2,).(,)(,11 —f—l)!)ﬁ(;) ‘P2n+1(cos 0)7
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which is just eq. (5.49) of ref. (*) expressed in Heaviside-Lorentz units with
¢=1.

Q) Center-fed, linear anlenna. As our third basic example we consider
the radiation from g thin, linear, centre-fed antenna of length d lying along the
z-axis centered at the origin. The current along the antenna vanishes at the
end points and is an even fuuction of z. The current density, expressed in
spherical co-ordinates, is radial and is confined to lines § = 0 and 6 = &. If
we assume the current density to vary with frequency w, as in eq. (2.26), then
the spatial part is given by (see ref. (*), p. 33)

I(r)
(5.22) J, =1 2mr?
0, r>daf2,

[6(cos @ — 1) — d(cos 6 + 1)], r<<df2,

where I(r) is the current, which will be specified later. From the continuity
equation the charge density is given by eq. (2.25) with the spatial part given by

r<< df2.

1 dafI [é(cos 6 — 1) — d(cos O 4 1)
(5.23) 0= m;{ e } !

When these source distributions are expanded in the SU, basis, the expan-
gsion coefficients are found from eqs. (2.18) and (2.19) to be

2§ +1\ 1 I . .
i (_:’—'2—)‘.___61710) j odd,
(5.24) Obm = 2qr? [ i dr
0, j even,
and
2i +1 .
(5.25) gt — | g Ome Tl j odd,
0, - j even.

The fact that only terms with m = 0 appear reflects the cylindrical symmetry
of the source, while only terms with j odd appear due to the behaviour of the
source under a parity transformation.

We note in passing that the continuity equation (3.17 ) requires the ex-
pansion coefficients (5.24) and (5.25) to satisfy eq. (3.18), which is easily verified
to be the case.

When the observation point has r > d/2, we can use eq. (3.19) to find the
radial component of the field strengths

a2

(5.26) o= ik (o) (2i + 1) 6nofdr’ [‘E Ghr) _ erie j,(aw’)] .

(wr)? 2m dr’ or'

0

6 — Il Nuove Cimento B.
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By noting that
o (;an_yor o1
V@)~

eq. (6.26) can be rewritten as

a/2

T % 2j +1 d/, ary dz
(5.27)  opm = thy{oor) ( 72—; )6m0fd¢’[ap(gj(wr’) -(-1—7;)—.7,(aw’)(dr,2 I+ sz)].

wr?

0

If we now assume that
(6.28) I{z) = I, 8in (wd/2 —_ wlz[) y

then the second term in eq. (5.27) is zero and the first term can be integrated
to give

(5.29) Wy =

ihHor) (27 + 1\,
T T ort ( o )6m0.71(wd/2)10 .
We note that this coefficient is O(r—2) and so makes no contribution to the
time-averaged power in the radiation zone.

For r > d/2 the angular coefficients of the field strengths are found from
eq. (3.15). In the radiation zone we find

. I, 241 R .\, €XD [toor]
5.30 im:__wanoj aoy—4)f — = -
(5.30) o= = G it et =i =
and
(5.31) oy =0

for all j, m. Thus, in the radiation zone, the only nonvanishing appreciable
part of the field is

Iyexp tor] & 2§41 i
5.32 —_ T — e ——— i d 2 T{ 0 .
(5.32) 4 P D) Vaig ooy edf) Thalw)

(5 0dd)

This expression is in Heaviside-Lorentz units with ¢ = 1 and can be converted
to Gaussian units by replacing (4z)-! by ¢
Since 7, and 7_ are negligible in the radiation zone, it is easy to show that (%)

(5.33) $4[* = |Bol* + |Bs|*.
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This implies that, since B, = 0 to O(r~), the time-averaged power per unit
solid angle is

P e ¢
] 2 - 2 2
(5.34) (0= o IPBE= vl

Converting eq. (5.32) into Gaussian units, we find

P I
(5.35) 5= o

= 2j4+1
= V2 +1)

{jodd)

(— )17, (kaf2) T2, :

as the exact result (in the radiation zone).
For a half-wave antenna (kd = z) the j = 1 term of eq. (5.35) is

r I 4\ (sintf) 12D3(3 .
sa g @) ew) (57) - e ),

which is exactly the result of ref. (%), p. 765. If we look at the first two terms
of eq. (5.35), we find, using the results of appendix B, that

P I

(_ ?_’2’_) (2/2)(— i/v/) sin b + —— v_ | j(mf2)-

V3i 2 212 \
'(—TSIHB) (b cos 6-——1)\ (8n) sin?6-

] 1— V% (4.94-10-%)(5 cos2 6 — 1)

2

)

which is exactly eq. (16.123) of ref. (*°).

L ]

One of us (MDS) wishes to thank Amherst College, where much of this
work was carried out.

APPENDIX I

The radial helicity vectors.

Helicity basis vectors are normally defined for a wave propagating in the
z-direction as

(A1) L= ity -

ﬁ
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The vector €, is called the positive helicity vector since it is an eigenvector of
the z-component of angular momentum with eigenvalue - 1 and, similarly,
é_ is an eigenvector with eigenvalue — 1, and is called the negative helicity
vector. These statements are proved by acting on e, expressed in Cartesian
co-ordinates with the matrix representing the z-component of angular momen-
tum in Eueclidean three-space:

0—i 0
(A.2) €, S=8={i 0 0
O 0 o0
It is easy to show that
/1 1
(A.3) Ss(ii — 4+
0 0
and thus that
(A.4) Séo= 4 &,
and
(A.b) 8;€,= 08, .

If, instead of having a wave propagating along é,, we have one propagating
along the radial direction, then we can define (1) a radial spin operator é,-S,
and the vectors

1 . 4
(A'ﬁ) X ﬁ (éﬁ =+ ’wtp) ’ Xo— ér .
It was proved in ref, (1) that
(A.7) (6 S)pe= £ 22
and
(A.8) (€.8) xo= 0y, -

Thus y, are the positive and negative helicity vectors for a wave propagating
along e, and are called the radial helicity vectors.
If we let ¥ be a complex vector field, then we can expand it as

(A.9) V=( "2+ (gt V), + *Pix_.

Using the orthonormality relations

i =i =0,

Zi'xi: Zt'xoz 1,
we find that

WV =1iV,, g V=—iV_
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for ¥V, defined in eq. (2.1). Thus, expanding V in terms of the radial helicity
vectors, we find

(A.10) V=V, b+ (V) gt (—iV) % -

AppENDIX II

Explicit Expressions for some T? .

From p. 36 of ref. (2!) the defining relation for 17, is

(A1) T, = (— 1) [(9‘ — m)!(j + m) T .

(j—n)!(j -+ n)!
j_ n . + n a —_m—a —1 (] m<nda
. ‘Z( ) ( 4 ) Uyt i wh T ugy

a 4 J—m—

where the summation index @ runs from max (0, — m — #) to min (j — m, j — n)
and

The u,, are matrix elements of an element of SU,

A2 Uy Use) ( Co8 9/2 exp [i(g, + 9—"2)/2] 1 8in 6/2 exp (g, — ?1)/2] )
(A-12) ( ) = \i 5in 0 oxp [—ilgs— ¢2)/2] €08 0/2 exp [— i(g: - @2)[2])

oy Uge
(A.13) (’Mu “12) =( OC_ l?-)
Ugy Uss —p &

with 0<f<m, 0<p,<4m and 0<@,<2n. Using (A.13) in (A.11) gives

(A4) T, — (— 1)p=n [(9’ — m)!(j + m) !]%_

(j —n) 1§ + n)!
j—mn j+mn o .
-Z( )( )tx“ﬂ’ m—d (— Byi-n-a(g)min
. a j—m—a

P = aﬂﬂl—‘m—ﬂ(_ B)J—ﬂ—d(&)m+n ,

If we let

(21) M. CarmeL: and S. MALiN: Representations of the Rotation and Lorentz Group
(Marcel Dekker, New York, N.Y., 1976).
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then a little algebra shows that

(A15) P— (cos@—!—l)“(cosﬂ—l)f_

cos—1 2

- (ctg 0/2)™ exp [— imep,] exp [— ingy]i—.

Putting (A.15) into (A.14) we find

A, T (1) + .
a0) T = i G,

rexp [— img,] exp [— ing, |(ctg 9/2)'“+"(
ofi—n i+ n cosB—l—l)“
;( a )(j—m—a)(cosﬁ—l ’

First, we note that all the ¢,-dependence is contained in an exponential
faetor, so

cos 0 -—1)‘.

(A.17) T, oc exp[— ing,]
and similarly ‘
(A.18) TS, oc exp [— imep,] .

The 6-dependence is contained in three terms and can be expressed as

(A19) IR < (7 - ")( fAm ) (cos 6 — 1)*-3(cos 6 - 1)e.

2 a j—m—a

a

On the other hand, the Jacobi polynomial is defined as (*?)

(A.20) PP (g) = 277 i (V + a) (y + ’3) (@ — 1) + 1),

a y—a

0 the O-dependence of T7%,, is essentially that of a Jacobi polynomial, depend-
ing on the values of m and n (which determine the limits on the summation
in eq. (A.16)). For our purposes it is sufficient to evaluate (A.16) only in some
special cases.

Setting » = 0 and m = 1 in eq. (A.16), we find

(A21) Ti= (—1)¥i VL? exp [— ip,](ctg 0/2)-

_ cos 6 — 1\ (] j (cpsﬂ+1)“
( 2 )aéo(a)(i-——l—a) cosf—1) °

(22) 1.8. GraDsETEYN and J. M. RyzHIK: Tables of Integrals, Series and Products (Aca-
demic Press, New York, N. Y., 1965).
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Comparison with eq. (A.20) shows that, if welety =j — 1, « = § = 1, wehave

(A22)  Ti,= (—1)¥ (— %) V7 7; L exp [— ig,] sin 6 P(cos ) .

But (22)

2 d 2 d

(1,1} = (0,0) -
Pin(00s0) = == Geos oy T %D = 17 Gicos 0)

P(cos 0),

where P,{cos 0) is the usual Legendre polynomial, and thus

2 1
j +18inf

(A.23) PP(cos §) = — Plcos 0) .

This means that

A..24: Tj — _121‘—7:_—_ ——‘.2.P’ 6
( ) Lo(#) = (—=1) ViG T D) exp [— ig,] P;(cos 0)
and
(A.25) o) = (— 1) ————— exp [ig,] Pj(cos §) .

° Vit
In particular,
(A.26) Ty o(u) = — {;—5 sin 6 exp [T 4g,]
and

. V3. . :

{A.27) T%,olu) = — -~ tsin 0(5 cos20 — 1) exp [F ip,] .

(38) A. ErpeLYI: Higher Transcendetal Functions, Vol. 2 (McGraw-Iili, New York,
N.Y., 1953), p. 170, 179.

® RIASSUNTO (%

Si discute il problema della possibilitd di avere una formulazione alternata completa del
Velettrodinamica classica in termini di una singola funzione scalare che pud portare an-
che ad una nuova formulazione dell’elettrodinamica quantistica. Il metodo usa un’analisi
armonica e armoniche sferiche pesate secondo lo spin. Si ottengono le equazioni di base
per sorgenti che variano nel tempo e le si risolve esplicitamente per tre problemi di
base deliberatamente semplici ma caratteristici: cariche puntiformi, anelli di corrente
e antenne. Sono stabilite la connessione tra forza di campo e formulazioni di potenziali
e la relazione con ’approccio convenzionale alle armoniche sferiche settoriali.

(*Y Traduzione a cura della Redazione.
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Pellende OCHOBHBIX NMPOG/EM 3JIEKTPOJAHHAMHKH B (OpMYJMPOBKE € HCHOJb30BAHHEM
rPyIMOBOro0 NPOCTPAHCTBA.

Pesrome (*). — HccnenyeTcs BONPOC, MOXHO JIM IOIIYIUTh GOPMYNHAPOBKY KJIaCCHIECKOH
SNEKTPOAMHAMMKE B TEPMMHAX OJHOH CKanApHOH (YHKIMM, KOTOpas 3aT€M NO3BOJIHIA
6Bl MOIYyYdTbh HOBYIO (OPMYTUPOBKY KBAHTOBOH 3IICKTPOJMHAMAKH. I1pennoxeHnsiit
METOI HCIONIB3yeT TAPMOHHYECKHIl AHAIA3 K CIMH-B3BCIICHAbIE CHEePHIECKUC TaPMOHHKH.
MbI MONy4aeM OCHOBHBIE YPABHEHHMS IS 3ABHCSINMX OT BPEMEHH MCTOYHUKOB. 3aTeM
9TH ypaBHEHHS PEINalOTCs B TPeX CIydasx: TOUYEYHBIC 3apsNbl, ETTH C TOKOM M AHTCHHBIL.
VCTaHABAMBAIOTCS COOTHOMEHHA MEXY HANPSKEHHOCTRIO IIOJIA B MOTCHIAATIOM H CBA3b
¢ 0GBYHLIM MOIXOOOM C BEKTOPHBIMHA chepHUSCKHMH TapMOHBKaMH.

(*) Ilepesedeno pedaxyueii.
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