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Summary. — [t has been well established that, as predicted by Ala-
ronov and Bolun, electron interference patterns can be shifted by the
introduction of electromagnetic potentials, even if the electrons never i
enter the region in which the fields are nonzero. In this paper we prove i
that, even though the interference pattern shifts. none of the moments
of the electron’s position r, nor of its kinetic momentum =, are atfected.
On the other hand, we prove that the expectation value of the operaror
sin a-n (with @ a certain fixed vector), which was first introduced by
Aharonov. Pendleton and Peterson, does shift.

PACS. 03.65. — Quantum theory; quantum mechanics.

1. - Introduction.

More than 25 years have passed since AHARONOV and Bomy predicted the
remarkable phenomenon that has come to be called the Aharonov-Bohm ef-
fect (). Their idea ran so counter to prevailing beliefs about electromagnetic
potentials that it met with considerable skepticism, and, even though the effect
was observed experimentally, there were several attempts to interpret it in a
more traditional way. Today, however, both the Aharonov-Bohm prediction
and its experimental verification are generally accepted as beyond question.

() Y. Anarovov and D. Bomm: Phys. Rev., 115, 485 (1959).
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26 M. D. 3EMON and J. m. TAYLOR

In this paper we wizh to draw attention to a somewhat surprising aspeet
of the Aharonov-Bohm etfeet that has hitherto cone almost nunnoticed, We
certainly make no elaim that onr resudt i3 as surprising as the original predie-
tion of Aharonov and Bohm, but it does serve to reemphasize the remarkable
nature of this faseinating experiment.

The Aharonov-Bohm. or AB, experiment can be arranged in several dif-
ferent wayvs, of which the simplest to discuss is that proposed by Amiroxov
and Bomdt themselves. A beam of eleetrons is directed at a barrier with two
iilentical slits. The resalting interference pattern, consisting of regularly spaced
two-slit frinces mderneath the one-:lit envelope, is observed on a <ereen fur
beyond the barrier. The two-slit pattern is now caused to shift underneath
the fixed one-slit envelope by the introduction of mawnerie or eleetric ]H)ri'.".r‘ii'\l-“.
A or . The main point of the AB eilect is that one can arrange conditions <o
that, althoush the eleetrons experience nonzero pofentials, they never enter
the recion in which the fdelds B =%V oA or E = — Vg are nonzero. Fven
under these conditions the eleetron interference pattern does shirt,

The AB etffeet is, of course, o quantum-mechanieal effect. T elissieal
mechanies 8 charged particle respouds only to eleetromagnetic fields fuor
direetly to the potentinds) and. if the particle never enters the region in which
the tielils are nonzero, then its motion cannot be sifected in any way by the
presence or absence of the tields. In quantum mechanies it ix the potentials A
or @ that appear in the Schridinger equation.  As AIARONOV and Doyt made
clear, the presence of nonzero potentials ean shift the interference patternvven
when the eleetrons never enter the recion in which the fields B or E are nonzero,

In this paper we prove that, although the electron interference pattern
shifts as predieted by Amirovov and Bomn, none of the moments of the clec-
tron's position or momentnm are affeeted. Specifieally, let € denote the op-
erator

(1) Oy Palan .
In this definition I, m, n, p, q and r are arbitrary nonnegative integers,

r = (z,, :) is the position operator and = = (=m,, 7,,7.) is the kinetic mo-
mentum,

(2) n=mv=p—qAd.
Here p is the canonical momentum, represented by — ¢V, and ¢ is the particle’s

charge (q = — e for an electron). With these definitions we prove that, in both
the magnetic and electric AB experiments, the expectation value

3) (O = (plr, 1), Cp(r, 1))

is independent, at all times ¢, of the potentials A or ¢, that is, (C), has the same
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EXPECTATION VALUER IN THE AILARONOV-BOHM EFFECT »

value in the presenee of the potentials A or ¢ as it has when 4 anid @ are iden-
tieally zero. This in turn implies that the expectation value ot any polynomial
in the six variables r and 7 is independent of the magnetie or electrie potentiuls.

In sect. 2 we review briefly the AB effect and the proof that the interference
pattern shifts when an appropriate magnetic or electric potential is switched on.
This allows us to introduce our notation and assumptions on the wave fune-
tions. In seet. 3 we prove our « no-shift theorem » that the expectation valne
of any polynomial in the variablexs r and 7 does not shift when the potentinl
is introducedd.

Finally in seet. 4+ we diseuss an operator

(4) D=zsina ',

where a i3 o fixed veetor pointing in the direetion from one slit to the otieer.
This operator was introducedd by Amaroxov, PENDLETON and PETERsoN (9)
(APP) and called by them the modular momentum. We shall prove that—is
suggested by APP—the expectation value of D does change when magnoetic or
electric potentiinls are introducel, We econclude sect. £ with & brief diseus<ion
of the seeming parndox that, while no powers of & are shifted. the fnnerion
sin @-7 is shifted: in partienlar, we deseribe why this is not a contradiction.

To conclude this introduction we most mention that some particnlar cises
of the no-shift theorem have been given previously. The paper of APDP? wives
the no-shift theorem for powers of the momentum, mainly in the contexr of
the electric AB offect. (In the case of the eleetrie effect there is no distinction
between the canonical momentum p and the kinetic momentum 7. of course.)
In the recent review of Olariu and Popescu (?) the no-shift theorem for r, T,
and m* is proved for the magnetic effect. KoBE (%) has given an example of
wave functions that appear to violate the no-shift theorem, but, as emphusized
by OLARIU and Popescu, Kobe's assumptions violate an essential requirement
of any realistic version of the AB experiment—namely that the two slits cannot
overlap one another. We ourselves were led to the no-shift theorems by the
paper of AAP* and have already emphasized their importance at the 193¢
Symposium on quantum mechanics at SUNY-Albany (5).

Finally, we should emphasize that, in the case of w at least, the no-shift
theorem is easy to understand: the evolution of (x), is given by Ehrenfest’s
theorem in terms of expectation values of » x B or E, and in the AB experiment

(*) Y. Amaroxov, H. PENDLETON and A. PETERsox: Int. J. Theor. Phys., 2, 213
(1969).

(*) 8. Ovariv and I. 1. Popescu: Rev. Mod. Phys., 57, 339 (1985).

() D.H. KoBe: 4nn. Phys. (V. ¥.), 123, 381 (1979).

(*) M. SEmox and J. R. TAYLOR: in Fundamental Questions in Quantum Mechanics.
edited by A. Ivomara and L. Rorn (Gordon and Breach, New York, N. Y., 1986).
p. 191,
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these expectation values are zero. Therefore, the evolution of (=), is unat-
fected by the presence or absence of the fields. This simple and transparent
argument can be extended by induction to include higher powers of the mo-
mentum and is, in fact, the argument sketched by APP in the electric case.
However, it does not seem to extend to arbitrary powers of the position op-
erator. \We present here a method of proof that applies equally to the no-shift
theorems for powers of r and = and to the shift of the modular momentum (1),
in both electric and magnetic AB effects.

2. — Notation and review.

We consider a beam of charged particles traveling in the positive z-direction
towards a two-slit barrier Iving in the plane z = 0. The exact shape of the
slits does not matter, but they must be identieal, one being the result of trans-
lating the other through a displacement d in the z-direction. It is essentiul
that the two slits do not overlap; in the magnetic AB effect, for example, this
allows us to place a thin solenoid in the shadow of the barrier, between the
two slits.

We assume, a3 usual, that in the region beyond the barrier (z > 0) the
actual wave packet yp(r,¢) can be small approximated as the sum,

(3) p(ry t) = pu(ry 1) + walry 1)

where y,(r, t), with » = 1 or 2, is the wave packet that would have been trans-
mitted if the »-th slit were open and the other closed (®). We assume that at
a certain time ¢ = 0, just after the wave passes the barrier, the packets y,
and yp, are nonoverlapping; that is, the supports of y,(r, 0) and w.(r, 0) are
disjoint. (This assumption also is only approximate, but is certainly a very
good approximation.) Naturally, as time passes, the packets y, and yp, do
overlap again, allowing us to observe interference between them. We assume
further that the incident wave packet is wide enough compared to the slit
separation that y,(r,t) is just the translation through d of y,(r,t):

(6) wa(ry t) = py(r — d, t) = exp [—id-p] i (ry t) .

(®)) Since elementary discussions of the two-slit experiment often imply that (3)
follows from the superposition principle, it is perhaps worth emphasizing that (5) is
only an approximation. The point is that i, and y, satisfy different boundary conditions
at the barrier (v, is zero with discontinuous derivative at slit 2 and vice versa). However,
to the extent that y, is very close to zero in a whole neighborhood of slit 2, and wice
versa, (3) is an excellent approximation.
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If the incident wave (in the region z< 0) is well peaked in momentum
with mean momentum p, and reduced wave-length 1 = 1/p,, then, at points
far from the slits in 2 > 0, eq. (6) implies that y, differs from ¢, by the phase
factor (*) exp [— i#-d/1]. Thus the total intensity |y|® far beyond the slits is

(7) [p(ry 0)[2 = |wy(ry t) 4 pe(r, )|? =
= |1 + exp [i7d[Z][*|yy(r, t)|* = [4 cos? (F-d/27)][y(r, 1)]2.

Here the first factor defines the two-slit interference pattern and the second,
[wa(r, £)|% is the one-slit envelope. In & two-dimensional situation (the infinitely
long slits of many elementary discussions) the two-slit factor reduces to

4 cos?® (F+d[27) = 4 cos? [d(sin 6)/22]

with maxima given by the familiar condition d(sin 8)/241 = nx or
dsin § = ni.

Magnetic AB effect. — In the magnetic Aharonov-Bohm experiment the
standard two-slit experiment is modified by the introduction of a magnetic
field which is arranged so that the electrons never enter the region of nonzcro
field. This is accomplished by placing a narrow solenoid just beyond the barrier,
between the two slits, as shown in fig. 1. The solenoid carries a constant current

T)’

Fig. 1. - The magnetic AB effect. The electrons propagate in the z-direction, coming
from the region z < 0, and strike the two-slit barrier located in the (z, y)-plane. The
solenoid is placed just downstream of the barrier, between the two slits.

(') To prove this, expand yp, in terms of stationary states, whose asymptotic form
18 exp [ipyr]/r. The corresponding expansion of w, has r replaced by |r— d|, which
for large » is approximately r — F-d. Thus y, differs from p, by the phase factor
€Xp [— ip, T - d]. ;
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and produces o constant magnetic field B. The exaet shape of the solenoid
does not matter, but it is convenient to consider & closed solenoid, such as the
torus shown in fig. 1, since this lets us assume that the B field is confined en-
tirely inside the solenoid (®). Therefore, since the solenoid is placed immediately
in the shadow of the barrier, the electrons do not enter the region in which /2
is nonzero (?).

Oun the other hand, the magnetic potential A is not zero outside the solenoid
and, as pointed out by AEARONOV and Boinyi, its effect is to change the relarive
phase of the two waves p, and yp, and hence to shift the observed two-slit inter-
ference pattern, This ean be (and has been) proved in several ways. We <l
prove it again now, because we shall use the same technique to prove our main
results in sect. 3 and 4. Our proof uses the following theorem:

Theorem. Let R denote any simply connected region, in which the magnetic
field is zero: Vx4 = 0. Let x(r) be the single-valued function

8) alr) = q_]'A(rf)-ar’ .

Fs

where ry is any fixed point sud the path of integration lies entirely in E. (No-
tice that x(r) is single-valued because V<4 = 0 and R is simply connected.)
Finally, let p(r) be any wave funetion that vanishes outside R and let = be
the kinetic momentum
Th== )= Q'A ’
where
p=—1V

is the canonical momentum. Then, for any component ¢ =1, 2, 3 of  and p
and for any nonnegative integer n,

9) a7 exp [ia(r)] p(r) = exp [ia(r)] p} y(r) .

We can describe relation (9) as an intertwining relation for the operators
m, and p; and the phase factor exp [iz(r)]. The content of this theorem is

(®) A simpler arrangement is, perhaps, to consider an infinitely long, straight solenoid,
but this causes some ambiguity associated with the return field on the outside.

(*) This claim has been tested experimentally by ToxoMURA, who did the AB experi-
ment both with and without a gold shield around the source of magnetic field. That
the results were the same in both cases (and agreed with the AB predictions) veriticd
that the electrons do not penetrate the region of nonzero field and that the ADB effect
does not depend on such a penetration. This beautiful experiment is described in the
conference proceedings of ref. (3).
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certainly well known and is implicit in many standard works (:). On the
other hand, we have not seen it stated explicitly in this simple and rather
elegant form. Its proof is straightforward and depends on the obvious tact that

Va(r) = qd(r).

Result (9) cannot be applied direetly to the complete wave function y of
the two-slit experiment, since the region defined by a barrier with two slits
is not simply conneeted. It ean, however, be applied to the functions, i, and y,.
approprinte to the separate single slits. We add a superseript 0 to identify
the wave functions for zero magnetie ficld. These wave functions satisfy the
time-dependent Schrodinger equation

p* g . Cyy
(10) (—— —- ):pﬂsr. t) =1 = t),

Zm

where » identifies the open slit (v=1 or 2) and V is the potential deseribine
the barrier. (In what follows, we take for granted that, after the wave has
passed the barrier, the etfeet of V is negligible and »? evolves according to the
free Hamiltonian p2/2m.) We now define two phase functions x,(r) by eq. (8)
with the path of integration from any r, in 2< 0 through the »-th :lit to any
point r in 2> 0. (Note that «.(r) depends on r, but is independent of ¢ since
A(r) is.) If we now define

(11) w(r, t) = exp [ia,(r)] yi(r, t),

then it follows from (9) and (10) that yp, satisfies

ot BT , i c Wr
(12) (E-'_I)wﬂr’ﬂzia_t{r’ t).
This is the time-dependent Schrédinger equation for the electron in the presence
of the magnetic potential A(r). When ¢ —— oo, the wave function y° re-
presents a wave packet approaching the barrier from afar and the same is
therefore true of y,. Therefore, y, is the wave function for a single slit in the
Presence of the constant magnetic potential A(r).

It follows from (11) that the complete wave function, in the presence of
the magnetic potential, is

(13)  y(r, t) = pu(ry 1) + pu(r, 1) = exp [ia(r)] yi(r, 1) + exp [ioa(r)] y2(r, 1) .

(11;] J.J. Bagvran: Adeanced Quantum Mechanics (Addison-Wesley, Reading, Mass.,
69), p. 15.
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The effect of the magnetic potential is simply to change the phases of the 1wo
components, i, and ., by the different, r-dependent phases x,(r) and x.(r).
The change in the reiative phase of w,(r) and w.(r) (at any r in 2> 0) is inde-
pendent of r, since it is just the fixed number

(14) X = o (F) — aty(r) =q§_1-dr,

where the closed path of the integral goes through the first slit and returns
through the second. This integral is just the total magnetic lux @ along the
solenoid. Therefore the magnetic potential simply moves the whole two-xlit
pattern—the first factor in eq. (7)—sideways by the phase x = ¢q®, without
affecting the one-slit envelope |y, (r, t)|* at all.

Electric AB effect. While the magnetic AB effect has been repeatedly
verified experimentally, the same is not true of the electric effect (*!). Further,
the electric effect is somewhat less interesting theoretically since the distinetion
between the kinetic and canonical momenta (x and p) disappears when there
is no magnetic field. For both of these reasons we shall focus mainly on the
magnetic effect here. Nonetheless, we describe the electric effect brietly since
all our results apply to it as well.

In the electric effect, a potential difference is established between the com-
ponents y, and y, of the wave by placing two conducting cylinders just beyvond
the slits, as shown in fig. 2. A potential difference is applied between the eylinders

Fig. 2. - In the electric AB effect a potential difference is applied between two con-
ducting cylinders placed just beyond the two slits.

(11) A recent report of an experimental verification is G. MarTtevuct and G. Pozzri:
Phys. Rev. Lett., 54, 2469 (1985); see also S. Orariv and 1. I. PopEscu: Rev. Mod. Phys..
57, 412 (1985).
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after the wave packet has entered them (at ¢ =0) and is switehed olf awain
pefore they leave (at time t = T). (This would obviously be extremely hird
in practice, but iy nonetheless possible in principle.) To the extent that the
potential is constant inside each eylinder, the electron experiences no electrie
field. On the other hand, the electric potential p modifies the wave function
go that

(15) we(r, t) = exp [T (t)] p)(r, 1),

where, as before, »° denotes the wave function for the y-th slit, but

(16) w(l) = 4fp)

]

where @, (t) is the electric potential inside the »-th eylinder. That ., as defined
in (13), satisties the Schrodinger equation with eleetric potential ¢.(f) is cusily
verified by direet ditfferentintion. The result of the applied potential ditferenee
is that the relative phase of the two emerging wave packets is shifted by the

amount
T

%= q[lp0) — @]t

L]

Just as in the magnetic AB effect, this implies a shift of the two-slit pattern
underneath the fixed one-slit envelope.

Assumptions on the wave functions. In the next two sections we prove our
two theorems. Naturally, these depend on the assumptions that went into our
model of the AB experiment, and we therefore conclude this section by
reiterating what those assumptions are. First, we take for granted that
Y=y, + w, in the region z > 0, downstream from the two-slit barrier. Next
we assume that, at a certain time t = 0, just after the wave packet passes
through the slits, the packets u, and w, do not overlap. Finally, we assume
that, for ¢ > 0, the evolution of y, and y, is unaffected by the barrier; that
is the term V in eqs. (10) and (12) can be neglected for ¢ > 0.

With these assumptions our model of the AB experiment is analogous to
the model usually used to discuss two-slit experiments in optics. In both cases
one approximates the net effect of the complicated interation between the
slits and the incident beam by a wave function, y = y, + y,, satisfying the
assumptions above. That this is a realistic model is confirmed by the many
experiments that have verified the interference patterns that it predicts. (See
ref. (), pp. 390-408, for a comprehensive survey of the experiments with elec-
trons, and p. 360 for a critique of various models.)

3 = Il Nuovo Cimento B.
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3. = Proof of the no-shift theorem.

We consider first the magnetic AB effect since the extension of our argu-
ments to the eleetric etfeet will prove entirely straightforward. Similurly,
we exsmine first just powers of any one component of r or w, since the exten-
sion to operators of the form (1), involving products of powers of all six com-
ponents of r and m, is likewise trivial.

We begin with the operator =7, with ¢ = 1, 2, or 3, and n an arbitrary
nonnegative integer. We wish to show that the expectation value

(17) /1?>: = (l,L‘{l", t), '1? 'P(r! )

is independent of the presence of the magnetic potential A. Substituting eq. (10),
p =Y exp [ix,(r)] 4°, we find that

]

@y = X X <exp [ix,(r)] y)(r, ), 77 exp [ix,(r)] yy(r, 8) .

ym] =]

Using theorem (9), we can move ! through the phase factor on its r.h.s. to give

Gy, =X X {yllr, 1), exp e, (r) — a,(r)] PTyL(r, 1))
vou

This double sum contains four terms in sll. In the two terms with » = 4, the

phase factor is equal to unity; in the other two, it is the constant exp [—i/x].

In either case the phase factor is a constant and can be taken outside the

integral to give

(18)  <aid, = X <yy(ry 1), piyy(ry )> + 2 Re exp [ia] yj(r, 1), pFyi(r, 1)) .

The two wave packets ] and y) in (18) evolve according to the free Hamil-
tonian p*/2m when ¢>0. Therefore, the matrix elements of p? are independent
of time and can be replaced by their values at { = 0:

(19) @&H,= i <¥’3(f; 0), p? W?(ri 0)> + 2 Re exp [i«] (lp:(r, 0), P?'Pf(fs 0)>.
Lo !

Now, at time ¢ = 0, the wave packets ] and p) are nonoverlapping. Since
p? = (—ic/er,)", it follows that the final matrix element in (19) is zero and
we conclude that

2
(20) (A, = 2 <yi(r,y 0), P 3(r, 0)) .

y=1
This is independent of the magnetic field and equal to its value for the case
that the field is switched off. This completes the proof for the operator =}.

e A T ‘
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We consider next the expectation value (12)
(o= ey 0, Phplr, )
We can make the same substitutions as before, and, sinee r; commutes with

exp [iau(r)], we arrive at the equation corresponding to (18):

2
—
y-

@y D= > Lpar, t), riyd(r, t), + 2 Re exp [ia] {pi(r, t), r*yl(r, 1) ,.

Since the two wave functions evolve freely, we can rewrite the tinul matrix
element as '

pot

10 ottty = {diroog |, - = i i, ) ) =
U HER IR o ol =] il )

oo\
— :er.ll}, [————— N T D
<P' : mecer, Ft

which is zero since the wave functions 7 and 3 do not overlap at ¢ = 0. Thus,
according to (21), the expectation value r7>, is equal to the sum of two terns,
neither of which depends on the magnetic potential.

This completes the proof of the no-shift theorem for the operator r’. I
should be clear that the arguments used for =7 and r? can be combined to cover
any product of components of w and r and our proof is complete for the muu-
netic AB effect.

The proof for the electric etfect follows the same steps, but is much simpler.
The kinetic and canonical momenta aree qual (w = p), and the phase factors
exp [ixu(r)] of the magnetic case are replaced by factors exp [iau(t)] that are
independent of r and so commute with both r and p. With these two sim-
plifications the proof goes through exactly as in the magnetic case.

One might feel that, if none of the moments of the electron distribution
shift, then the distribution itself could not shift. This feeling is based on the
conviction that any «reasonable» distribution is uniquely determined by its
moments and, if this were true, then our no-shift theorem would indeed cou-
tradict the observed shift of the interference pattern in the AB experiment,

It turns out that the conditions under which a distribution is uniquely
Getermined by its moments are rather complicated (13). We can, nevertheless,

(**) We assume that the moment in question is finite. If it is not, then the no-shift
theorem is still true but is less interesting.

(lj}. See, for example, H. CraMER: Methamatical Methods of Statistics (Princeton
Lmversity Press, Princeton, N.J., 1946), p. 176; or W. FELLER: An Introduction to
l?robability Theory and Its Applications, Vol. 2, 2nd edition (John Wiley and Sons,
New York, N. Y., 1971), p. 207.
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make three simple observations. First, one simple sufficient condition is that
the distribution has compact support, but our wave function certainlv docy
not satisfy this condition. (Although our assumptions imply that p, and i,
have compact support at time ¢ = 0, at this time the packets o not overlap
and there is as yvet no interference pattern to shift. By the time the packets
do interfere they certainly no longer have compact support.) Second, u neces.
sary condition that a distribution be determined by its moments is that all of
its moments be finite: and we certainly have no guarantee that all moments
of |p(r, t)|* are finite. Third. there i3 one clear, general conclusion that we can
draw: we know that the distribution 'p(r,t);* does shift in the AB effect and
we have proved that none of its moments do shift. Therefore, it is clear thut
lp(r. t))* is not in the class of distributions that are determined uniquely by
their moments.

Finally the no-shift theorem is sufficiently surprising that it would be nice
to find a solvable model in which one eould see explicitly that the moments (o
not shift. Unfortunately, there are very few solvable models and all of them
involve plane waves, which lead to moments that are divergent. Nevertheless,
we are preparing s second paper, in which we shall present two solvable models

in which one can see that those moments which are finite do not shift (14).

4. — Modular momentum.

In this final section we examine briefly an operator introduced by APP (?)
and called by them the modular momentum. We first sketch the motivation
for considering this operator. '

Having established that none of the moments of either r or = are changed
in the AB effect, one is naturally led to ask whether there are any operators
that do change. The answer to this question is certainly «yess If p and y°
are the wave functions with and without the AB field, then we have seen that »
and y° are linearly independent, and this immediately guarantees the existence
of self-adjoint operators D for which

(22) <y’ Dy = <y, Dy) .

(4) One solvable model that seems at first sight to contradict our theorem is the
scattering by a magnetic « string », originally analysed by Amaronov and Bomr in ref. ().
This leads to a nonzero cross-section that is symmetric about the forward direction
and would seem to shift any even moment of x and n,. We remark first that the geo-
metry of this experiment (which has no two-slit barrier) does not fit the conditions
of our theorem. More important, OLsRIU and PorEscu (ref. (})) have analysed this
experiment in terms of wave packets and shown that it is in fact consistent with our
results.
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It is actually quite easy to construct examples of operators satsifyine
eq. (22). For example, let V' denote a volume in position space and let P(I7;
be the projection operator onto this volume (**). The expectation valuc
{y, P(V)w) is just the probability of finding the electron in the volume 1
and, with V suitably chosen. this probability is certainly different for » and »".
OrAritC and PoPEsScU (3) have pointed out that parity is another operator sat-
isfying (22), since the introduction of an external magnetic field certainly
changes the parity.

Nevertheless it is natural to inquire whether one could find an operator
whose expeetation value shifts and which has a more obvious dynamical signif-
icance. It was in this spirit that APP introduced their « modular momentum s,
defined us

(23) D = sin a'® = 3in ax,,

where a is a vector pointing in the r direction (that is, from slit 1 to slit 2).
They argued (in the context of an AB etfect using o diffraction grating) thar
this is & natural operator to consider and that its study enhances our under-
standing of the dynamies of the AB experiment ('*). Here we wish to add
some weight to these claims by proving that, in both the magnetic and eleetrie
two-slit experiments, the expectation value of the operator (23) does imdewd
shift—even though none of the moments of 7. do. We shall consider explicitly
just the magnetic AB etfeet since, just as in sect. 3, our arguments apply equally
to the electric effect but are simpler, since & = p in that case.
We can expand sin ax, as

sin axr, = (exp [iaxw,] — exp [— iax,])/2i

and, since it is more convenient to examine the separate exponentials, we
consider first

{exp [iaz.]>, = (y(r, 1), exp [tar,] w(r, t)>.
By (13), this is equal to
<exp [iam,])e = 3 3 <exp [ia(r)] y;(r, t), exp [iax.] exp [ia,(r)] y,(r, 1)) .

Using theorem (9), we can move exp [iax,] through the phase factor and replace
it by exp [iap.]:

(24)  Cexp [iaz.]y = 3 3 exp [ila, — a,)] <¥(r, t); exp [iap,] y2(r, 1)) -

(**) That is, P(F) p(r) = p(r) if r is in ¥, but P(V)p(r) = 0 otherwise.
() For a review of their arguments in the context of the standard AB effect, see ref. (%).
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(The remaining phase [actor has been taken outside the integral since it is
independent of r.) Since p), evolves freely, the matrix elements in this sum
are constant and can be evaluated at ¢ = 0. Further, the operator exp [iap_]
is the translation operator through the vector — a. Thus we ean rewrite (24) as

(@5)  Cexp [iam]y. = 3 3 exp [ilx, — 2,)] Cy2r, 0), vi(r + a, 0)> .
Vo

If we tirst choose @ = d (the slit separation), then by (6)
wir - a, 0) = pi(r — d, 0) = pi(r, 0).

Thus the matrix element with v = L and g = 2 is just (y{, > = }. By the
assumed nonoverlap of »! and y? (at ¢t =0), the other three matrix e¢lements

in (23) are zero and we find that
(26) {exp [idx.]>; = } exp [—ix],

where, as before., x = x%,(r) — x(r). Since x = q® (or — e® for electrons), this
expectation value certainly varies with the applied magnetic field; that is,
like [w|? its value when the tield is present is different from that when the tield
is switched off, except when x is a multiple of 2.

A similar analysis can be applied to the operator exp [— iaz,] and hence
to sin azw, and cos azx.. All of these operators have expectation values that
vary with the applied magnetic field.

There is in fact some neighborhood of a = d for which the expectation
values of these operators change with the AB field. The point is that, since
the supports of y? and y? are assumed not to overlap at ¢ = 0, there is a whole
neighborhood of @ = d where three of the matrix elements in (25) are zero.
The fourth matrix element is a continuous function of a and equals
[exp [— ix]]/2 at a = d; therefore, it is close to [exp [—ix]]/2 for a close to
a = d. Accordingly, the expectation value of exp [ian.] is shifted to a value
close to [exp [—ix]]/2 for all a close to the slit separation d (V7).

At first sight it is surprising that the expectation value (exp (iax,)) can
shift when none of the moments {(zz?> do. Indeed, if we were to expand exp [iaz,]
in a power series

(27) exp [iam,] = 3 (iaz.)*/n !,

then a shift of {exp [iaz.]) would appear to require that at least one of the
moments (x> also change. The resolution of this apparent paradox is that

(1) In the limit of infinitely narrow slits there is a shift only for @ = d; this is also the
situation in ref. (*), which considers an infinite diffraction grating.
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expansion (27) is valid only for a certain class of wave functions and our wave
functions are not in this class. For example, in the case of the electric ADR
effect, = = p, and c¢q. (27) acting on a wave function p(r) generates the Taylor
series for p(r 4+ a), which converges only if p(r - a) is analytic in a: but,
since ! and p) are identically zero outside their supports, they certainly wre:
not analytic.

AmgiroNov, PENDLETON and PETERsoON (®) actually considered the opr-mr:nr
(28) D = (sin ax.)/a
gince, in the limit a — 0, this operator approaches .. In this sense D can he
regarded as a generalization of 7z, and a generalization whose value is atfected
by the AB ficlds. It is natural to ask whether its equation of motion offers
any new insight into the AB effeet. To conelude, we review briefly the diseussion
of this point by APP. For simplicity, we restrict attention to the eleetric cise,
although similar conelusions apply to the magnetic effect as well.

It is easily shown that in the Heisenberg picture operator (28) satisfies the
equation of motion

dD
(29) . g = :'?5 {{y(r + a,t) —q(r, t)] exp [iap.] +

+ [p(ryt) —g(r—a, t)] exp [—iap.Jj .

where ¢(r, t) i3 the electric potential and all operators are in the Heisenberg
picture. In the limit that a — 0, eq. (29) reduces to Ehrenfest’s theorem:

dp. _ ¢
dt qé‘.c'

However, with a = 0, (29) shows that the time evolution of the modular mo-
mentum (28) is determined by potential differences at points separated by
the vector a. APP argue that this is what allows the modular momentum to
shift, while all the moments of p, (which depend on &p/ez) are unchanged.

5. - Conclusion.

The two main results of this paper are that the introduction of magnetic
or electric potentials in the AB experiment does not change the expectation
falue of any polynomial in the position r and kinetic momentum =, but that
it doeg change the expectation value of the operators exp [ia'm], sin a-7 and
€08 @ 7 (for certain values of a). The first of these results appears superficially
to contradict the observed shift of the AB interference pattern and, in the same



40 M. D. 3EMON and J. R. TAYLOR

way, the second result appears to contradict the first. On ecloser examination,
both results, although surprising, are nevertheless perfectly consistent.
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@ RIASSUNTO (%

31 & ben stabilito che, come previsto da Aharonov e Bohm, le interferenze tra wli elettroni
possono essere spostate dall'introduzione di potenziali elettromagnetici, anche s b
elettroni non entreranno mai nella regione nella quale i campi =ono diversi da zero.
In questo lavoro =i prova che, anche se i comportamenti d'interferenza si =postano, nes-
suno degli impulsi della posizione degli elettroni r. né del suo momento cinctico 7 ¢
influcnzato. D'altra parte, si prova che il valore atteso dell’'operatore sina-m wvon a
un certo vettore fissato), che fu introdotto per primo da Abaronov, Pendleton ¢ Peterson.
si sposta.

(*) Traduzione a cura della Redazione.

Pesiome He monyyexo.






