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Summary. - It has beell l\"t'll ,"'tablishcd that, as predicted by .\h..-
rono\" and Rohll1, electron interfl'ren('e pattern;l can be "hifted h~- tht'
introduction of electroma~nctic- potentials. e,en if the electrons Ilcn'r
enter the region in which the Iidlls ,ire nonz('ro. In this papl'r we [11'0\-('
that. even thou~h the interference pattern shifts. none of the moments
of the elel'tron's position r. nor of its kinetic momentum 1t, arc affected.
On the other hand, we prove that the expectation value of the operator
sin a'1t (with a a certain fixed vector), whieh was first introduced hy
Aharonov. Pendleton and Peterson. does shift,

P ACS. 03.65. - Quantum theory; quantum mechanics.

1. - Introduction.

More than 25 years have passed since .AHARONOVand BolD! predicted the
remarkable phenomenon that has come 'to be called the Aharonov-Bohm ef-
fect (1). Their idea ran so counter to prevailing beliefs about electromagnetic
potentials that it met with considerable skepticism, and, even though the effect
was observed experimentally, there were several attempts to interpret it in a
more traditional way. Today, however, both the Aharonov-Bohm predic.tion
and its experimental verification are generally accepted as beyond question.

(1) Y. AUARONOVand D. BoHM: Phys. Rev., 115, 485 (1959).
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In thi;; paper WI' wi~h to (Imw att(~ntion to a ;;om!'what;;urprisin!.( a.'I"'('1
of t1l0 .\harono\-- Bohm <'lIprt that ha,;; hitllPrto !.(one almost unnOii('pd. \ \"p

cl'rt:tinly m,tke no cbim that tJllr !'I"llit is as surprising a:; t11!' ol'i!!inal [In'di.,-
tion of Almronov a,nd Bohm, but it (101';;.',L'I'\'(~to reempha:;izt' the rpmark;Lhlt,

natur<' of this fascinating ,'xpL~rim0nt,

The Aharonov-Bohm, or .\B, p:oqwrimcnt can be arranged in ::;evemi (lif-

ferent ways, of which the :;impl!'st to discuss is that proposed by AHAIW~()\'
and BalDI tlwm::;Pln's. .\ lwam of pjeptrons is dir('('ted at a barrier with 11\'0

i,lentical slits. The rewltin!! intnrfl'rpnee pattern, con::;isting of regularly ,;;pa('t,cI

two-slit frin!.(l':; underneatl1 the onl'-slit envelope, i::; ob::;rryed on ,L,en'l'n !eLl'

beyond the barril'r, The t1,o-slit pattl'rn i;; now cause(l to shift lln(lt'f'Ill,'at II
the fixL'il tJlw-slit I'll \'('10111'by the introtlllctioll of ma!!nl'tic or ('!Petrie pott'!!liaJ..;.

A or ft. TIll' main [loint of the .\B ('tIt,tt is that one can ,trrall!!p eolldititlll""
thM, although t!lP I'll'rtroll:; e:qwrien('1' nonZNO potentiab. th!'y Il"\'('!, "Il!""
th(' r('gion in \\'hich tilt' tIt'ltl:; B = \' "A or E = - \(1' :11'(' nOIlZl'l'O, E\"II

un(it'!' thl'sl' conditions tht, ,'It'dro!! intl'rft'!'I'!l('P pattern docs ,hift.
TIlt' .\B 1'11't'('t is, or COI1!'St', a (!11<mtl1m-nH'('hanical 1'11('rt. [It <'I;L.,~i"ai

m('clwnies a ('harg('(l partirh' !'t'~po!lCb onl,l- to electromaglldi(' ii,'lds i::"r

(lirt'rtly to the potclltials) ,HU!. if tht' partic'll' n('\'pr enter:; tlH' wgioll ill \\'llidl
the fiel(ls are 1Ionzero, tll('11 its motion cannot lH' alfl'ctl'u in ;my 1\"'\' h\' till'

prt'st'nc(' or ah~elll'e of tll<' tit'ltls, In qu:1ntnm ml'!'ha.nirs it is tIll' potl'nri;tl" .t

or rp that a.ppt':Lr in tilt, Sdlrijdin~t'r equ;1tion. As AIL\RO,,"O\' and GOlD! Tll;idt,
('!t'ar, thl' pr('~l'nce of nonZl'ro pot('ntials ran shift the intprfC'rC'IH'1'patte'l'll ,'\"'Il
when the el('ctron;; Ile\'('r e!lter the rpg-ion in whirh the fielcl~ B or E al'(' IIOIlZ"ro,

IIi. thi~ paper we pro\,(1 that, a,lthoug-h the elpctron interferPlwl' pattt'I'Il

shift;; :1;; pr('(lie1('d by AIL\RO~OVand BalDI, none of the moment;; or the ,.[..('-
tron's position or momentum art' affected. Specifically, let C denor,' tIlt' op-
pratoI'

(1) C = x1y"'Z':7;::7;::7;; .

In this definition l, m, n, p, q and r are arbitrary nonnegatiYe integ('l'~,
r = (x, y, z) is the position operator and 1t = (nz, :7;y,:7;:) is the kinetic mo-
mentum,

(2) 1t = mv = p - qA ,

Here p is the canonical momentum, represented by - iV, and q is the particle's
charge (q = - e for an electron). With these definitions we prove that, in both
the magnetic and electric A.B experiments, the expectation value

(3) <0)1 = <1p(r, e), 01p(r, t)

is independent, at all times t, of the potentials A or rp,that is, <O)t has the same
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value in the presp!l(',f' of the potentials A or If as it has when A. anll rparp illpll-

tically zero. This in turn implies that the expectation value ot any polynomial
in the six variablps r a,nd 1t is in(lqwn(lcnt of the magnetic or electric potcntiab.

In sect. 2 Wp rnview brietiy the ~\.B ptIect and the proof that tlw intl'fferf'IlcP

pattern shifts when an appropriate magnetic or electric potential is 'iwitchp(l OIL
This allows us to introducp onT notation and assumptions on thl> wan' fnnc-

tions. In sect. 3 we pron~ our " no-,~hift theorem ,) that the expectation val111'

of any polynomial in tIll' varia-blp,; rand 1t does not shift wh(>n the pott'll Ii:!,]
is introducpd.

Finally in 'iP!'t, .t wp Iliscn:>}; :m opl~mtor

(4) D = sin a.1t,

where a is :. fixI~u ,-('ctor point in!! in till' Iliri'ption from onf> slit to 11\1'olIH'I'.

This operator was introdu('I>ll h,l- .\II_\JW:\O\-. PF.:'iDLETO:'i and PI,:n:I;:"O\; I')

(APP) and callp!l by tllpm till' modular molllPntum. \Yo shall pro\"I' tl1al-;l"
suggested by .\ PP-tlw t>:\:l)('d:~tion I-alup of D docs change wllpn ma!!nt't it, III'
electrir. potential,; arp introdu(,pll. "-n PO!\I'lUlle SP(.t. -t with a bripf Ili';PII,,-jol:

of the seeming uamtlo:\: tll:1t. II-hilt, no pow!'r,; of 1t ar!' shiftl'lI. tll!' fl!lll'rillli

sin a.1t i8 shiftrll: ill partir'ubr, \\'1' IIp,;rrilw why this is not a l'ontradil'1illll,

To conchHI!' thi,; introtln(,tioll I\'(' mo,;t nll'lltion that sump parti(>lll:tl' (';I"I'~
of the no-shift tlworpm h:1\-p Iwl'n ,!!in'n prpdonsly. Thl' papPI' of "\ Pl'~:.:-i I'",

the no-shift th!'orpm for powl'rs of the mompntum, mainly in till' POllt-t",t lit'
the electric AB (ItTeet. (Tn the case of tIll' !'lpctric etTeet tl1<'rp is no rli,;tin(,tillll

between the cll/nonical mOml'lltum p :)'1lI1the kinetic momrntum 1t. of rOllr';I',)

In the recent rrvil'\\- of ala/rill and Popescu (3) the no-shift theoff>m for r, 7t,

and 7t2is pro,pd for tile magnetic etTect. KOBE(t) has given an rxampll' of
wave functions that appear to ,iobte the no-shift theorem, but, a~ pmpha,;iz!'11
by OLARIDand POPESC1;,Kobe's assumptions violate an essential requirPIlll'llt
of any realistic version of the AB experiment-namely that the two slits cannot
overlap one another. We ourselves were led to the no-shift theorems by thp
paper of .AAP2 and havr already emphasized their importance at the l!'\St
symposium on quantum mechanics at SUNY-Albany (5).

Finally, we should emphasize that, in the case of 1t at least, the no-shift
theorem is easy to understand: the evolution of <1t), is given by Ehrenfest's
theorem in terms of expectation values of v XB or E, and in the .AB experiment

(2) Y. AHARONOV,H. PENDLETONand A. PETERSON: Int. J. TheoT. Phys., 2, :!l:!
(1969).

(3) S. OURIU and L L POPESCU: Rev. Jlod. Phys., 57, 339 (1985).
(4) D, H. KOBE: Ann. Phys. (N. Y,), 123, 381 (1979).
(5) ~L SEMONand J. R. TAYLOR:in Fundamental Questions in Quantum Jlechanics.
edited by A. hOMATA and L. ROTH (Gordon and Breach, New York, )i. Y., 1986).
p. 191.



..

28 11. D. 9ElIO~ and ,T. R. TAYT.Olt

these expectation values are zero. Therefore, the evolution of (1t)t is unaf-
fected by the presence or absence of the fields. This simple and transparpnt
argument can be extended by induction to include higher powers of themn-
mentum and is, in bct, the argument sketched by APP in the electric casl',
However, it does not seem to extend to arbitrary powers of the position op-
erator. We present here a method of proof that applies equally to the no-shift
theorems for powers of rand 1t anu. to the shift of the modular momentum (,1),
in both electric and magnetic AB effects.

2. - Notation and review.

We consider a beam of charged particlps traveling' in the positivI' :-dil'pction
towards a two-slit barrier lying in the plane z = O. The exact shape of thl'
,slits dol's not matter, but the,\<"must bl' identical, one being the result of tran,;-
lating the other throug-h a rli.,placement d in the x-direction. It is essential
that the two slits do not on:-rlap j in the ma!!netic AB effect, for example. this
allows us to place a thin solenoid in the shado'y of the barrier, between tIll'
two slits.

We assume, as usual, that
actual wave packet 'P(r, t) can

in the region beyond the barrier (z> 0) the
be small approximated as the sum,

I
t

(5) 'P(r, t) = 'Pl(r, t) + 'P2(r,t) ,

where 'P,(r, e), with v = 1 or 2, is the wlwe packet that would have been trans-
mitted if the v-th slit were open and the other closed (8). We assume that at
a certain time t = 0, just .\fter the wave passes the barrier, the packets 1f'1
and 'P2are nonoverlappingj that is, the supports of 'Pl(r,O) and 'PI(r,O) are
disjoint. (This assumption also is only approximate, but is certainly a very
good approximation.) Naturally, as time passes, the packets 'PI and 'P2do
overlap again, allowing us to observe interference between them. We assume
further that the incident wave packet is wide enough compared to the slit
separation that 'P1(r, t) is just the translation through d of 'PI(r, t):

(6) 'P1(r, t) = 'PI(r - d,t) = exp [- id.p] 'PI(r, t).

(8) Since elementary discussions of the two-slit experiment often imply that (5)
follows from the superposition principle, it is perhaps worth emphasizing that (5) is
only an approximation. The point is that 'PIand 'PIsatisfy different boundary conditions
at the barrier ('PIis zero with discontinuous derivative at slit 2 and vice versa). However,
to the extent that 'PI is very close to zero in a whole neighborhood of slit 2, and vice
versa, (5) is an excellent approximation.



ExPECTATION VALUES IN THE .UIARONOV-BOH:K EFFECT 29

If the incident wave (in the region z < 0) is well peaked in momentum
with mean momentum Po and reduced wave-length ;{ = llPo, then, at points
far from the slits in z> 0, eq. (6) implies that 1fJa differs from 1fJlby the ph:!.:>!'
factor (7) exp [- if.dl;{]. Thus the total intensity 11fJlafar beyond the slits is

(7) 11fJ(r,t)la = l1fJl(r,t) + 1fJa(r,t)la =

= 11 + exp [if.dl;{]!a!1fJl(r,t)la = [4 cos2 (f.dI2;{)]I1fJl(r,t)i2.

Here the first factor defines the two-slit interference pattern and the second,
l1fJl(r,t)i2, is the one-slit envelope. In a two-dimensional situation (the infinitely
long slits of many elementary discussions) the two-slit factor reduce:;; to

4 cos2 (f.dI2J.) = 4 cosa [d(sin 8)/2;{]

with maxima given by the familiar condition d(sin 8)/21. = n;r or

d sin 8 = nA..

Magnetic ..:U3 effect. - In the magnetic .Aharonov-Bohm experiment tilt'
standard two-slit experiment is modified by the introduction of a magnetic
field which is arranged so that the electrons never enter the region of nonzero
field. This is accomplished by placing a narrow solenoid just beyond the barrier,
between the two slits, as shown in fig. 1. The solenoid carries a constant current

x

Fig. 1. - The magnetic AB effect. The electrons propagate in the z.direction, coming
from the region z < 0, and strike the two-slit barrier located in the (x,y)-plane. The
solenoid is placed just downstream of the barrier, between the two slits.

(') To prove this, expand 'PI in terms of stationary states, whose asymptotic form
is exp[ipor]jr. The corresponding expansion of 'Pa has r replaced by Ir- dl, which
for large r is approximately r - r. d. Thus 'Pa differs from 'PI by the phase factor
exp [- ipor. a].
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and. prod.uces a constant magnetic field. B. The exact shape of the wll'noid
does not matter, but it is conveniont to consider a closed solenoid, such as the
torus shown in fig. 1, since this lets us assume that the B field is confill('d en-
tirely insiue the solenoid (8). Therefore, since the solenoid is placeu imml'lliately
in the shallow of the barrier, the electrons do not enter the region in which !J
is nonzero (9).

On the other hand, the magnetic potential A is not zero out.,ide the solt-noirl
and, as pointeu out by AH.\RO:-;O"and BOlDI, its effect is to chango thp relati n~
ph~l,s('of the two "'an's IPIand 'P2and hence to shift the obseryed two-slit iJltt'r-
ference pattern. This (:an be (and has been) proved in several W,l,ys. \\-p ,hall
pro"e it again now, because \\'(~shall use the same technique to proyp 0111'main
results in sect. 3 anu 4. Our proof uses the following theorem:

Theorem. Let R denote any ;;imply connected rrgion, in which the ma.!,!lll'ti('
field is zero: v x A. = O. Let ;c(r) be the single-valued function

(8)

r

iX(r) = fJ(A(r').dr' .
r,

where ro is any fixed point anu tho path of integration lies entirely in R. (:'\0-
tiel' that ;c(r) is single-n.lued because v xA. = 0 and R is simply COnnl't'tl'(I.)

Finally, let rp(r) be any wave function that vanishes outside Rand lut 7t hI'
the kinetic momentum

1t = P - qA ,
where

p = - iv

is the canonical momentum. Then, for any component i = 1, ::!, 3 of 1t aUtl p

and for any nonnegative integer n,

(9) n: exp [ia(r)] tp(r)= exp [ia(r)]p:tp(r).

We can describe relation (9) as an intertwining relation for the operator~
nj and Pi and the phase factor exp [ia(r)]. The content of this theorem is

(8) A simpler arrangement is, perhaps, to consider an infinitely long, straight solenoid,
but this causes some ambiguity associated with the return field on the outside.
(9) This claim has been tested experimentally by ToNoMuRA, who did the .\B expl'ri-
ment both with and without a gold shield around the source of magnetic field. That
the results were the same in both cases (and agreed with the AB predictions) vf'rifil'd
that the electrons do not penetrate the region of nonzero field and that the AB etIect
does not depend on such a penetration. This beautiful experiment is described ill thl'
conference proceedings of ref. (5).
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certainly well known and is implicit in many standard works (1.10). OIl til,'

otlwr hand, we have not seen it stated explicitly in this simple and mtlwr
elegant form. Its proof is straightforward and depends on the obvious fact that

Va:(r) = qA(r) .

Result (!:I)cannot be applied directly to the complete wave function 'f' of
the two-slit experiment, since the re:,,'ion defined by a barrier with two~lit.)
is not simply conrwetc(L It I'an. howcvcr, be applied to the function:;;, '1'1all,1 'i',.
appropriatc to the separate sing-It' slits- \Ye <Lllda superscript 0 to i,lentif,-
the wave functions for zero magnutic fielil. These wave functions satisfy tht,
time-depenlleut Sehrodinger l'quation

(10) (
[I' , ) cll-

,
- r 'p~(r. t) =i -;;,2(r. t) ,

:':111 'd

where v identifies tho opf'n slit (v = 1 or ~) and V is tho potential tlcserihill!:
the barrier. (In what follows, we take for g-ranted that, after the wan' ila"
passed the barrier, the l'JIect of V is negligible antI 'f'~evolves according to tlH'
free Hamiltonian p"f'2m.) ,Vf1 now define two phase functions x,(r) by f'q. (.'~)
with the path of integration from any ro in z < 0 through the v-th slit to all,'-

point r in z> o. (Note that a:,,(r) depends on r, but is independent of t since
A(r) is.) If we now define

(11) tp,(r, t) = exp [ia:,(r)] tp~(r, t) ,

then it follows from (9) and (10) that tp, satisfies

(12) (
;t' , -

) . . ctp,
- T} tp,\r. t) = t. -;:;- (r, t) .:';11/. . c;t

This is the time-dependent Schrodinger equation for the electron in the presence
of the magnetic potential A(r). When t -+- 00, the wave function tp~re-
presents a wave packet approaching the barrier from afar and the same is
therefore true of tp,. Therefore, tp- is the wave function for a single sJit in the
presence of the constant magnetic potential A(r).

It follows from (11) that the complete wave function, in the presence of
the magnetic potential, is

(13) tp(r, t) = tpl(r, t) + tp~(r,t) = exp [ia:1(r)]tp~(r,t) + exp (ilXj(r)]tp~(r,t) .

(10) J. J. SAKURAI: .dJi'anced Quantum Jlechanics (A.ddison-\Yesley, Reading, :Jla~~.,
1969), p. 15.
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The effect of the magnetic potential is simply to change the phases of th,' 1\\11

components, 'PI and 'P2, by the different, r-dependent phases ~l(r) :11111x"(r).
The change in the relative phase of 'PI(r) and "P2(r) (at any r in z> 0) is ind,',

pendent of r, since it is just the fixed number

( 14)
x =xI(r) - IXz(r)= Qf.J. 'dr ,

where the closed path of the integral goes through the first slit and rptur'll"
through the second. This integral is just the total magnetic flux r/J along" tilt-
solenoid. Therefore the magnetic potential simply moves the whole twq-~li1
pattern-the first factor in eq. (7)-sideways by the phase IX= Qr/J, without
affecting the one-slit envelope l"Pl(r, t)/2 at all.

Electric .lli effect. WillIe the magnetic .AB effect has been rept'att'lU,\-
verified experimentally, the same is not true of the electric effect (11). Furtht'!'.
the electric effect is somewhat less interesting theoretically since the distinction
between the kinetic and canonical momenta (7t and p) disappears when tlH'rt'
is no magnetic field. For both of these reaSons we shall focus mainly on tIlt
magnetic effect here. Nonetheless, we describe the electric effect briedy silw,'
all our results apply to it as well.

In the electric effect, a potential difference is established between the com-
ponents 'PIand 'Paof the W:loveby placing two conducting cylinders just beyond
the slits, as shown in fig. 2. A potential difference is applied between the cyliud,'I'~

I;

I:
I

Fig. 2. - In the electric AB effect a potential difference is applied between two 1'011-
ducting cylinders placed just beyond the two slits.

(11) A recent report of an experimental verification is G. MATTEUCIand G. POZZI:
Phys. Rev. Lett., 54, 2469 (1985); see also S. OLARIUana 1. 1. POPESCU:Rev. J1011.Phy-<..
57, 412 (1985).
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after thB wave packet has entf>rpd tlH'm (at t = 0) and is switch('tl oIl a~.alll

before they lea'-e (at time t = T). (This would ob,iously be extrtlrnt'ly hanl

in practice, but is nonetheless possible in principle.) To the extent th;bt tilt'
potenti<lJ is constant inside ea,ch cylinder, the electron experiences llO l'It'<'1Tit,
field. On the otlwr hand, the electric potential p modifies th(~ wan~ fllnctioll
so that

(15) 1fJ.(r, t) = exp [ioc.(t)] 1p~(r, t) ,

where, :18 before, 1J!~(lenotes the w:we function for the v-th slit, but

(16) ex.(t)= qJ p.(t') dt' ,
1

where rp.(t) is the electric pott'ntial insidt' the v-th cylinder. That ,/',', a,; ,ldillt'cl
in (15), satisfies the Scl1riiding"t'r ('quation with electric potential ((.(t) i,; ";b.-ily

verified by direct diffl'rentiatioll, The result of the applied potential tlill,'n'II('"

is that the relative phase of the two emerging wave packets is shifted hy th.'
amount

r

IX = IJJ[PI(t) - 1f2(t)]dt .
0

Just as in the magnetic A.B effect, this implies a shift of the two-slit p.Htt'I'n
underneath the fixed one-slit envelope.

.Assumptions on the wave functions. In the next two sections we prove om
two theorems. Naturally, these depend on the assumptions that went into om
model of the A.B experiment, and we therefore conclude this section b~.
reiterating what those assumptions are. First, we take for granted that
IfJ= 1J!1 + 1J!2 in the region z> 0, downstream from the two-slit barrier, ~ext
we assume that, at a certain time t = 0, just after the wave packet pa8SPS

through the slits, the packets 1J!1and 1J!2do not overlap. Finally, we assume
that, for t > 0, the evolution of 1J!1and tp2is unaffected by the barrier; that
is the term V -in eqs. (10) and (12) can be neglected for t> O.

With these assumptions our model of the AB experiment is analogous to
the model usually used to discuss two-slit experiments in optics. In both casps
one approximates the net effect of the complicated interation between the
slits and the incident beam by a wave function, 1J!= "PI + 1fJ2'satisfying the

assumptions above. That this is a realistic model is confirmed by the many
experiments that have verified the interference patterns that it predicts. (See
ref. (3), pp. 390-408, for a comprehensive survey of the experiments with elec-
trons, and p. 360 for a critique of various models.)

3 - Il Nwwo Cimento B.
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:t - Proof of the no-shift theorem.

\Ye consider illst the magnetic A.B effect .:jinco the extension of uur :Lrgu-
ments to the electric effect will prove entirely straightforward. ::;imilarly,
we examine tirst just powers of anyone component of r or 1t, since the exten-
sion to operators of the form (1), involving products of powers of all six com-
ponents of rand 1t, is likewise trivial.

\Ye beg:in with the operator ;r7, with i = I,:::!, or 3, and n an arbitr:LI'Y
nonnegative integer. We wish to show that the expectation value !,

<

(17) <;r7), = <rp(r, e), ;r7rp(r, t)

is independent of the preSPllce of the magnetic potential A. SubstitUting eq. (10),
lp= L exp [iG(v(r)] Ip~, \ye find that

., .,

<;r7), = ~ I (exp [iG(v(r)] 'I'~(r, i), ;r7 exp [icep(r)] rp~(r, t).
v-I .u-I

t
f

1
.

I
Using theorem (9), we can move ;r; through the phase factor on its r.h.s. to givp

(n7>t = I I (rp~(r, i), exp i[cep(r) - ",.(r)] p;tp~(r, t).. p

This double sum contains four terms in all. In the two terms with v = p, the

phase factor is equal to unity; in the other two, it is the constant exp [:::ix].
In either case the phase factor is a constant and can be taken outside the
integral to give

(18) (;r7)t = I (tp~(r, e), p;tp~(r, t) + 2 Re exp [ice] <1p~(r,e), p;tp~(r, t).
.-1

The two wave packets 1p~andrp~ in (18) evolve according to the free Hamil-
tonian p2j2rn when t,> O. Therefore, the matrix elements of p; are independent
of time and can be replaced by their values at t = 0:

(19) (;'1;;), = L <tp~(r,0), p7tp~(r, 0) + 2 Re eX}>[ice](1p~(r,0), p;tp~(r, 0).
-1

Now, at time t = 0, the wave packets tp~and 1p~are nonoverlapping. Since
p; = (- i ajarIt, it follows that the final matrix element in (19) is zero and
we conclude that

(20)

.,

(7t~), = I <tp~(r,0), p;1p:(r, 0».
.-1

This is independent of the magnetic field and equal to its value for the case
that the field is switched off. This completes the proof for the operator ;'1;:.
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\Ve el)(bider next tho expectatioll v~.luo (12)

~r7), = ('jJ(r. I), 1'7IjJ(r, t) .

We can make the ::!a.mf\ substitutions as bdore, and, sin!'e /', eOmInlites \\'ith

exp [iiXu(r)], we ~~rrive at the equation corresponuing to (18):

(21) <r7>1= 2:(ljJ~(r, t), r7 'jJ~(r, t); +:! Re exp [ice]<1jJ~(r,t), r7IjJ~(r, t);.
,-I

Since the two wave functions evolve freely, we can rewrite the tiualmarri.\
element as

0 ( 0 (
fI, t)" . 'J )<lpg(r,t)'/'~'jJdr.t) = /jJ2(r.II). /',---;;; 'i'lir,O) =

( (
it 2

)
"

)= 'jJ~(r.II), /',--~ 'i'~lr.lI, .
II! (/'i

which is zero since the wave functions 'f'~:J.nu 'P~uo naG overlap at t = 0. Thll';,

according to (:21),the expectation valueJ7>t is equal to the sum of two tl'I'm"
neither of which depends on the magnetic potential.

This completes the proof of the no-shift theorem for the operator' r7. [I
should be clear that the arguments used for :07anu 1'7can be combineu to 1'0\',,1'
any product of components of 7t and r and our proof is complete for tilt' m:L~-
netic .AB effect.

The proof for the electric effect follows the same steps, but is much simpl,'r.
The kinetic and canonical momenta areI.' qual (7t = p), and the pha:,e betllI's
exp [ial'(r)] of the magnetic case are replaced by factors exp [iiXl'(t)]that are
independent of r and so commute with both rand p. With these two "im-
plifications the proof goes through exactly as in the magnetic case.

One might feel that, if none of the moments of the electron distributioll
shift, then the distribution itself could not shift. This feeling is based on the
conviction that any «reasonable » distribution is uniquely determined by its
moments and, if this were true, then our no-shift theorem would indeed COli-
tradict the observed shift of the interference pattern in the AB experiment.

It turns out that the conditions under which a distribution is uniqudy
determined by its moments are rather complicated (13). \Ve can, nevertheles,;,

(12) We assume that the moment in question is finite. If it is not, then the no-~hift
theorem is still true but is less interesting.
(13) See, for example, H. CRA.:\IER: Jlethamatical Methods of Statistics (Princl'ton
University Press, Princeton, N. J., 1946), p. 176; or W. FELLER: An Introduction to
~Tobability Theory and Its Applications. Yo!. 2, 2nd edition (John Wiley and SO1l8,
);ew York, N. Y., 1971), p. 227.



36 ~!. D. :,E~IOX and .T. H. T \ YT.I)R

make three simpl.> ob.~erYati()lls. First, ono simple sufficient co!Hlitioll i,; that

the distribution has eompactmpport, but our wave function certainly .lo.>s

not 8a.tisfy this conllitioll. (.llthough our a:i:iumptions imply that '1'1 awl '(2

have compact support at time t = 0, at this time tho packets do not o\-prlap
and thero is as yet no interference pattern to shift. By the time the p:whts

do interfero they certainly no longer have compact support.) Second, .~ w'ce>;-

:5:1ry condition that a distribution be determined by its moments is that all of
its moments be finite: and we certainly have no guarantee that all mom!~!W;

of !tp(r, t)12are finite. Third. there is one clear, general conclusion that WI' can
draw: we know that the Jistribntion !'p(r, t)i2 does shift in the AB effl~et allli

we have proved that none of its moments do shift. Therefore, it i:i choat" th;"t

I'p(r, t)l~ is not in tlw ch~s of Ilistribution~ that are tletermined uniqupl.\" h.\"
their moments.

Finally the no-8hift theorem is wfficiently surprising that it would be nice

to find a :-iolvable model in which one could see tixplicitly that the moments 110

not shift. "Cnfortunately, there are vl'ry few sol1'ablo models and all of tht'm

involve plane waves, which leafl to moments that are divergent. ~e'"\'l'tll\'ll'~'-;,

we 301'0preparing a second paper, in wl1ich we shn,ll present two solvable- mol ids
in which one can see ~hat those moments which are finite do not shift (uJ.

4. - :\[odular momentum.

In this final section we examine briefly an operator introduced by APP eJ
and called by them the modular momentum. 'Yc first sketch the motiyation
for considering this operator.

Having established that none of the moments of either r or 7t are changed
in the .AB effect, one is naturally led to ask whether there are any operators
tha,t do change. The answer to this question is certainly (Iyes t. Ii tp and /fIO

are the wave functions with and without the AB field, then we ha,e seen that Ip
and tp°are linearly independent, and this immediately guarantees the existence
of self-adjoint operators D for which

(22) <1pO,Dtp°) -:- <tp, Dtp) .

(14) One solvable model that seems at first sight to contradict our theorem is the
scattering by a magnetic «string », originally analysed by AHARONOVand BOH:Min ref. (1).
This leads to a nonzero cross-section that is symmetric about the forward direction
and would seem to shift any even moment of z and nx. 'Ve remark first that the geo-
metry of this experiment (which has no two-slit barrier) does not fit the conditions
of our theorem. ~Iore important, OLARIUand POPESCU:(ref. (3)) have analysed this
experiment in terms of wave packets and shown that it is in fact consistent "ith our
results.
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It is actually quite easy to construct examples of operators satsifyin~
eq. (~~). For example, let V denote a. volume in position space ;"nd let P( r)
be the projection operator onto this volume (15). The expectation value
<'P,P( V) 1f') is just the probability of finding the electron in the volume r
and, with V suitably chosen. this probahility is certainly different for Ip and ,/.
OLA.meand POPESCU(3) have pointed out that parity is another opemtor sat-
isfying (~:2), since the introduction of an external magnetic field certainl~-
chang!'s the parity. .

~eYertheless it is natural to inquire whether one could find an opt'raroi.
whose expf'cta.tion ,-alue shift.;; and which has a more obvious dynamical si!!nii-
icance. It was in this spirit that APP introduced their (C modular momentum.,
defined as

(23) D = sin a'1t = sin a..'z,

where a is a vector pointin~ in the x direction (that is, from slit 1 to slit :21-
They argued (in the context of an AB effect using a. diffraction!!Tatin~) th;bt
this is a natural operator to eonsidl'r and that its study I'nhanrrs our 1lI1t!t'r-
standing of the dynamics of the AB expl'riml'nt (IG). Here wr wish to ;blill
some weight to these claims by proving- that, in both the magnetie anti 1'1t't'tric'
two-slit experiments, the expectation value of the operator (23) do!'s iluIt't'tI
shift-e\-en thou~h none of the moments of 1t.,do. We shall consider expli('itl~-
just the magnetic AB effect since, just as in sect. 3, our arguments apply f'C[ually
to the electric effect but are simpler, since 1t = P in that case.

We can expand sin an., as

sin a:r.,= (exp [ia:rz]- exp [- ia:rz]) J2i

and, since it is more convenient to examine the separate exponentials. we
consider first

<exp [ia:rz])' = <1f'(r, e), exp (ia1tz] 1f'(r, t).

By (13), this is equal to

<exp [ia1tz]>,= 11 <exp [iIX.(r)]1f'~(r,e), exp [ia3tz]exp [iIXI'(r)]1f'~(r,t) ,. I'
Using theorem (9), we can move exp [ia z] through the phase factor and replaee
it by exp [iapz]:

(24) <exp (ia:rz])'= 11 exp [i(IXI'- IX.)]<1f'~(r,e); exp (iap",] 1f';(r, t) .. I'

(15)That is, P(V) rp(r) = rp(r) if r is in V, bnt P(V) rp(r) = 0 otherwise.
(16) For a review of their arguments in the context of the standard AB effect, see ref. (5).
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(The remaining phase factor has bpen taken outside the integral sinc!' it is

indcpendl'nt of r.) Since 'P~ e.oln,s freely, the matrix elements in this sum

are consta.nt and can b(' (Jntluated at t = O. Further, the operator t'xp [iap.-J
is the translation operator through the yector - a. Thus we can rewrit(' (~4) as

(25) (exp (ia:rx])' = 2: 2: exp [i(cci'- x,.)](tp~(r,0), tp~(r+ a, 0).
v I-'

If we first choose a = d (the slit separation), then by (6)

tp~(r+ a, 0) = Ip~(r ..:.-d, 0) = tp~(r, 0).

Thus the matrix element with v = 1 <Lnu,u = 2 is just (tp~, tp~>= }. B~' th('
;1.ssumed nono\"erlap of Ip~and Ip~(at t = 0), the other three m:~trix I'lt'ml'nts
in (25) are wro anu WI' find that

(26) (exp (id:rx]),= 1exp [- io:],

where, as before. x = x1(r) - x2(r). Since cr.= q$ (01' - e(/>for electrons). this

expectation value certainly nuit's with the applied magnetic field; that is,
like !tp!\ its value when the field is present is different from that when the field
is switched off, except when .x is a multiple of 2:r.

.A.simil:tr analysis can be applied to the operator exp [- ia.'"tx]and hence
to sin a:rx ,md cos a:rx. .All of these operators have expectation values that
vary with the applied magnetic field.

There is in fact some neighborhood of a = d for which the expectation
values of these operators change with the AB field. The point is that, since
the supports of tp~and !f'~are assumed not to overlap at t = 0, there is a. whole
neighborhood of a = d where three of the matrix elements in (25) are zero.
The fourth matrix element is a continuous function of a and equals
[exp [ - ixJJ/2 at a = d; therefore, it is close to [exp [- io:J]/2 for a close to
a = d. Accordingly, the expectation .alue of exp [ianx] is shifted to a value
close to [exp [-ixJJ/2 for all a close to the slit separation d (17).

At first sight it is surprising that the expectation value (exp (ia:rx) can
shift when none of the moments (:r:) do. Indeed, if we were to expand exp [ia:rxJ
in a power series

(27) exp [ian,,] = L (ia:r",)"/n ! ,

then a shift of (exp [ian,,]) would appear to require .that at least one of the.
moments (n:) also change. The resolution of this apparent paradox is that

(11) In the limit of infinitely narrow slits there is a shift only for a = d; this is also the
situation in ref. (2), which considers an infinite diffraction grating.
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expansion (27) is valid only for a certain class of wave functions and our \yan
functions are not in this class. For example, in the case of the electric An
effect, 1t = p, and ef}.(::?7)acting on a wave function 1p(r)generates tlw T:bylor
series for tp(r + a), which converges only if 1p(r+ u) is analytic in a: buL
since tp~ and tp~are identieally zero outside their :mpports, they certainly aI'"
not analytic.

.AIilRO:-iOV, PE:-iDLETO:-i .-md PETERSON (2) actually considered the operator

(28) D = (sin a'Jl,,)/a

since, in the limit a -+ 0, this oIwrator approaches :1:". In this sense D can hi'
regarded as a generalization of :1:,:md a. generalization whose value is atTI't't,',l
by the ..1B fields. It is natural to ask whether its equation of motion nll','I'"
any new insight into the AB etIt'ct. To concludn, we review briefly the disCl1""jlJlt
of this point by APP. For simplicity, we restrict attention to the electrie ('a."".
although similar conclusions apply to the magnetic effect as wpll.

lt is easily shown that in the Heisenberg picture operator (::?8)satisti.l's lli.,
equation of motion

(29) ~ = - .}a ([g(r + u, t) - r(r, e)]exp [iap,,] +

+ (tp(r,t) -tp(r-u, e)]exp [-if/}I,l}.

where rp(r,t) is the electric potential and all operators are in the Heisenberg-
picture. In the limit that a -+ 0, eq. (29) reduces to Ehrenfest's theorem:

dp" 2r---q-dt - CX .

However, with a =1=0, (29) shows that the time evolution of the modular mo-
mentum (28) is determined by potential differences at points separated by
the vector u. APP argue that this is what allows the modular momentum to
shift, while all the moments of p" (which depend on crp/2x) are unchanged.

5. - Conclusion,

The two main results of this paper are that the introduction of magnetic
or electric potentials in the .AB experiment does not change the expectation
value of any polynomial in the position r and kinetic momentum 1t, but that
it does change the expectation value of the operators exp (iu.1t], sin u.1t and
cos U'1t (for certain values of a). The first of these results appears superficially
to contradict the observed shift of the .AB interference pattern and, in the same
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way, the second. result appears to contradict the first. On closer examination,
both results, although ;;llrprising, are nevertheless perfectly consistent.

* * *
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. R I A S I) LX T 0 (O)

:3i e bell stabilito che. "ome prcvisto da ",\.haronov c Bohlll. Ie interferenze Ira gli "il'tt rOili

po~sono essere "po,;t<lll' ,lall'introduziolle di potcnziali elettrolllagnetici, andw"'" "Ii
elettroni non I'ntreranllO mai nella rcgione nella quale i campi sonG div('r,;i ,1<1z"ro.

rn questo lavoro ~i [>l'Onl. ehe, anche se i eomportamenti d'interferenza ~i ';PO,;taIiO. III";'
~uno degli impulsi della posizione II,'gli elettrolli T. ne del SIlO momenta ,'iI1l',ico 1t e
intiuenzato. D'altra parte. si pron1. ehe il valorc atteso dell'operatorl' ,;ina'1t ,,'oil a
un cerra vettore ti~~ato), che fu illtrodotto per primo da Almronov. Pendleton " 1',""""'".
si sposta.

(O) Tradu::iolll! a cura della Redaziolll!.
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