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If we let w be the instantaneous angular velocity of a
frame rotating about a point fixed in a Newtonian frame,!
then it is well known that an observer in the rotating frame
will observe three inertial forces:

F; = —mw X (w Xr), (1)
Fy = 2m(v X w), )

and
F3 = —ma Xr. (3)

It has been noted previously? that one way to visualize the
effects of the centrifugal force F; and the Coriolis force F;
is to study the effect of certain electric and magnetic forces
on test charges in a Newtonian frame. In other words, there
exist electric and magnetic forces in Newtonian frames
whose effect on charged particles exactly mimics the effects
of centrifugal and Coriolis forces in rotating frames of
reference. Using this analogy makes the effects of the forces
Fi and F, easier to understand, since most students are fa-
miliar with basic electric and magnetic phenomena by the
time they study noninertial reference frames.

The question naturally arises: is there an electromagnetic
force that mimics the effect of the transverse force F3? The
purpose of this note is to supplement Coisson’s paper? by
pointing out that the force F5 is completely analogous to the
force associated with an induced emf. To this end, we begin
with the electromagnetic case, and then develop this and
the inertial case concurrently.

Consider a Newtonian frame with positive test particles
of charge g. By measuring the acceleration of these particles
under various circumstances, and using the Lorentz force
equation ‘

F =q(E + v X B), (4)

we can assign an electric and magnetic field vector to every
point, thus defining an electromagnetic field.

A corresponding procedure can be used in a frame of
reference rotating with a constant angular speed w about
the z axis of some Newtonian frame. In this case there are
no external fields, and by measuring the acceleration of test
masses under various circumstances and using the force
Eqgs. (1) and (2), a rotating observer can assign an w vector
to every point, thus defining an w field. In the present case
this field is found to be uniform, and to point along the z
axis. We note in passing that this “inertial field” is just as
real in the rotating frame as the electromagnetic field is in
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the Newtonian frame, since both are defined in the same
way.

The effect of the inertial field in the rotating frame is
imitated in the Newtonian frame if the applied electric and
magnetic fields are

E=(m/q)w X (wXr) (5)

and
B=-(2m/q)w. (6)

A positive charge, acted upon by these fields in a Newtonian
frame, will behave exactly like a particle of mass m in a
frame rotating with a constant angular velocity w.? In this
way the effects of the centrifugal and Coriolis forces can
be easily visualized.

Next suppose that the magnetic field of Eq. (6) starts to
vary with time. For simplicity assume it to be increasing in
the positive z direction. In this case an electric field € is in-
duced that is tangent to any circle in the xy plane with its
center at the origin. This induced field is nonconservative,
and supplies the only contribution to the work done on a
charged particle carried around a closed path in the xy
plane containing the origin. This occurs because the electric
field of Eq. (5) is conservative (V X E = 0), and the force
associated with the magnetic field of Eq. (6) is always
perpendicular to the path. Thus the work done on a charged
particle carried around the path described above is

W=qfe-dl. (N

The integral in Eq. (7) is called the induced emf, and can
be evaluated using Stokes’s theorem and the Maxwell
equation

oB
VXxe=-2
€ o (8)
to give
=—¢ f B-Ado (9)

= —gBA, (10)

where B is the time derivative of the magnetic field de-
scribed above. The integral in Eq. (9) is over the area 4
enclosed by the path in the xy plane around which the
charge g is carried.

The corresponding situation in the rotating frame is
achieved if we let w increase in the positive z direction. This
means, of course, that the rotating frame is increasing its
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angular speed w about the z axis, as seen by an inertial ob-
server. A rotating observer sees a uniform w field parallel
to the positive z axis that is increasing with time, and thus
also measures the transverse force of Eq. (3) in addition to
the other inertial forces of Egs. (1) and (2). The transverse
force is tangent to any circle in the xy plane centered at the
origin. The work done on a test mass carried around a closed
path in the xy plane containing the origin is

W=f(F1+F2+F3)-dl. (1)
The integral of F; around the closed path is zero since this
force is conservative (V X F; = 0). The Coriolis force F» is
always perpendicular to the path, and so does not contribute
to the integral. Thus we only need evaluate the contribution
of F3in Eq. (11). Using the identity

OXr-dl=d-rXd, (12)

the integral in Eq. (11) becomes

=—m fa,.(rxdl). (13)

Since @ is uniform and is parallel to r X dl this becomes

W= —ma f|rxm|. (14)

The integral in Eq. (14) is recognized as twice the area
enclosed by the path. Thus

W= —2mA. (15)

Equation (15) is exactly what we would have predicted from
the electromagnetic analogy, since by Egs. (6) and (10),

W = —qBA
~q(2m/q)wA
= -2mwA.

Thus we see that the transverse force Fs in a rotating
frame behaves exactly like the force associated with an in-
duced emf in a Newtonian frame. Both forces have the same
direction, are nonconservative, and result in analogous ex-
pressions for the work. Because of this, the force associated
with an induced emf in a Newtonian frame gives a very
clear picture of the transverse force in a rotating frame of
reference.

!By “Newtonian frame” we mean an inertial frame of reference, in which
Newton’s laws assume their simplest form.

2R. Coisson, Am. J. Phys. 41, 585 (1973).

3This observation forms the basis of Larmor’s theorem.
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About one century ago, Fresnel and Arago investigated
the influence of polarization of light on interference pat-
terns.! Most textbooks include a discussion of these laws,24
but few demonstration experiments can be found in the
literature.>-8

Some years ago, Fortin’ described an experiment making
use of laser light and of a two-slit interferometer. We refer
the reader to this note for a discussion of the problems in-
volved in actual realization of a setup. As he points out the
main problem is to simultaneously have a large distance
between the slits, for convenient setting of polarizers, and
a fringe spacing large enough for convenient observa-
tion—two conflicting requirements.

We meet, at least partially, these two requirements by
using a grating as a beam splitter, and by observing the
interference fringes in its conjugate plane. The grating
generates a number of mutually coherent beams sufficiently
separated from each other, and we select two of these beams
to carry out the experiment. In this method of béam split-
ting, the amount of light available in the fringe plane is
much more than in the wave-front division method used by
Fortin,” and this permits a high magnification for conve-
nient observation at a reasonable distance.

The unexpanded laser beam (Fig. 1) impinges on a
grating located in the front focal plane of lens L;. In the
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back focal plane of L, we observe the grating diffraction
spectrum. A screen .S with two apertures selects two dif-
fracted orders. Punched computer cards constitute conve-
nient—and cheap-—screens. Any amplitude or phase
grating will serve the purpose: one of ours was a Ronchi
ruling of 25 lines/mm.

The back focal plane of L,—and screen plane—coincide
with the front focal plane of L,. The interference fringes
produced by the two beams are situated in the back focal
plane of L,, which is also the image plane of the grating.
These fringes are magnified, and projected onto an obser-
vation screen E by a microscope objective O. We list below
some numerical values, but they are not critical:

laser: 2-mW cw He-Ne (A = 632.8 nm);
grating: Ronchi ruling with 25 1/mm;

..f1,,... f,‘ ....,fzm

— S H}
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Fig. 1. Experimental setup. L), Ly: lenses; O: microscope objective; S:
screen with two holes; £: observation screen; P: polarizer.
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