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Scattering amplitudes and cross sections for screened Coulomb potentials are examined using the eikonal
approximation. We use the method of A transforms to show that if the screening function is sufficiently
smooth, then the screened cross section o, approaches the Coulomb 'cross section o¢ as the screening radius
p— . On the other hand, for a sharply cut-off Coulomb potential o, does not approach o¢ as p— .
These results agree with results obtained earlier using the Born approximation.

I. INTRODUCTION

In a previous paper' we established several re-
sults concerning scattering by screened poten-
tials. In particular, we considered screened
Coulomb potentials

V,(N=/Na,n, (1.1)

where « (r) is a screening function characterized
by a screemng radius p and satisfying (at least)

ozp('r)-O
ap(r)-l

Using the Born approximation for the scattering
amplitudes concerned, ‘we established various
conditions under which the scattering cross sec-
tion for V, approaches the Coulomb cross section
as p -, and other conditions under which it does
not.

Before summarizing the relevant results of Ref.
1 we must review our notation briefly. We de-
note the cross section for scattering an initial
wave packet of shape ¢ into a small solid angle
dQ by o(dQ ~¢). This is just dQ2 times the usual
differential cross section do/dS,

do

ase -’

Standard manipulations (Ref. 2, pp. 49-51) let one
express the cross section as

as r-o, p fixed ,

as p—-o, 7 fixed .

0(dQ-¢)=dQ

‘O(dﬂ°-¢)=d9fdif)(P/Pz)|f(Pﬁ‘§)¢(ﬁ)lz ;o (12)

where f(p’ —D) is the scattering amplitude, U is a
unit vector in the direction of d2, and p, is the
component of p in the direction of the incident
mean momentum P,

For normal short-range potentials under ordi-
nary conditions, the factors p/p, and f(pU~Dp) in
(2.3) are essentially constant in the region where

16

¢ (D) is nonzero. Thus both factors can be taken
outside the integral, with p replaced by p,. The
remaining integral is the normalization integral
for ¢ and the cross section reduces to the famil-
iar dQ|f(p,u~p,)|?. However, as emphasized in
Ref. 1, these familiar manipulations of (1.2) must
be examined very carefully in the case of the
screened Coulomb potential. This is because the
screened Coulomb amplitude can contain oscil-
latory factors which oscillate more and more
rapidly as the screening radius p - . Thus in
our analysis of the screened Coulomb potential
we must start from Eq. (1.2) for the cross sec-
tion rather than the familiar dQ|f |2

Quantities which refer to the pure Coulomb po-
tential we shall identify by a subscript capital C.
Thus o denotes the familiar Coulomb (or Ruther-
ford) cross section and fc the conventional Coul-
omb amplitude. The Born approximation to the
Coulomb amplitude we denote by fep. As is well
known, f., and f differ only by a phase factor and
are given by

f==2v/q*
where g is the momentum transfer g =2psin(6/2)

‘and

fe=fesexp[2io, - 2iy In(g/2)] ,

where o,=argl'(1+4v) is the /=0 Coulomb phase
shift, -

Quantities which refer to the screened Coulomb
potential (1.1), with screening radius p, we label
with a subscript p. For convenience, we use units
for which 7%, m (the reduced mass), and p, (the in-
cident mean momentum) are all equal to one.

In Ref. 1 we evaluated the screened Coulomb
amplitude fo in Born approximation and proved two
principle results as follows:

(i) If the screening function o (r) is suff1c1ent1y
smooth?® then asp-« the screened cross section
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o, approaches the Coulomb cross section o

1]
lim 0,(dQ~¢)=0.d2~9¢) , (1.3)

p—>eo

(ii) but if @, (7) is the sharp cutoff
a,(n)=0(p-7),

then o, does not approach o, and in fact

limo,(dQ~¢)=30(d2=¢) . (1.4)
-

These two results were proved by computing the
appropriate screened amplitude f,, in Born approxi-
mation and inserting it in Eq. (1.2) for the cross
section. In the smooth case we found that, as
p =, f,approaches f¢ uniformly for all p in the
region of integration; which immediately implies
the limit (1.3). However, for the sharp cutoff we
found that f, approaches f. plus an oscillating
term. We showed that this extra term corres-
ponds to scattering from the discontinuity in the
potential at »=p, and that, no matter how large
we make p, those packets whose impact param-
eter b is of order p are scattered by the discon-
tinuity and contribute exactly the extra 3 o to the
cross section. Although both of our results were
proved only in Born approximation, we conjec-
tured that it is reasonable to expect them to be
true for the exact cross sections as well.

In his lectures at the Boulder Summer Institute
in 1958, Glauber stated a result which throws con-
siderable doubt on our conjecture that result (1.4)
is exactly true. He computed the amplitude fo for
the sharp cutoff in eikonal approximation and
stated that the cross section g, does converge to
ogcas p—=.> Now, the eikonal approximation is
generally believed to be especially reliable for
large impact parameters, which is precisely where
the extra 3 0. in our result (1.4) comes from.

Thus if it is correct that the extra o, is absent
from the eikonal approximation, it seems likely
that its presence in our previous analysis reflects
our use of an unsuitable approximation (the Born
approximation) rather than the true state of af-
fairs.

It is clearly desirable to examine closely the be-
havior of screened Coulomb potentials using the
eikonal approximation; and this is what we do in
this paper. We make an asymptotic expansion of
the amplitudes using the method of “% transforms’
as described in Chap. 4 of the recent and beautiful
book of Bleistein and Handelsman.® We show first
that for smooth screening functions the cross sec-
tion o, does converge to the Coulomb cross sec-
tion o(; that is, our result (1.3) holds in eikonal
approximation. Second, we show that for the sharp
cutoff, o, does not converge to o, but converges
instead to 30, as in our Eq. (1.4); that is, our re-

»

sult (1.4) is also correct in eikonal approximation,
and Glauber’s claim is incorrect. That both of our
results (1.3) and (1.4) are also correct in eikonal
approximation gives strong support, we feel, to
our conjecture that they are in fact exactly true.

The main body of this paper can be briefly de-
scribed as follows: In Sec. II we briefly review
the eikonal approximation and the method of 7
transforms. In Sec. III we prove the result (1.3)
(in eikonal approximation) for a smooth screening
function of the form «(»/p), where «(£) has four
continuous derivatives that decrease like the fol-
lowing powers as £ - «:

aM(E)=0E"> " as E~,

for some ¢ >0 and #=0,1,2,3,4. These conditions
are more restrictive than (and include) the condi-
tions used in Ref. 1; they are probably more re-
strictive than is necessary. However, as men-
tioned in Ref. 1, a precise set of necessary condi-
tions is probably not very interesting to know.

In Sec. IV we give the corresponding analysis for
the sharp cutoff and prove the result (1.4). We
show that in this case the integral defining the
amplitude has one more critical point than in the
smooth case, and that it is this extra critical point
which contributes the extra 3o, in (1.4). In Sec.
V we sketch the proof of some of the estimates

" used in Secs. IlI'and IV.

To conclude this introduction we should empha-
size that we do not claim that our conclusion—that
smooth screening functions yield the Coulomb
cross section when p - «, while the sharp cutoff
does not—is particularly surprising. Nonetheless
it is important to establish precisely what screen-
ing functions can be safely used, and we offer the
present work as a step in this direction. In addi-
tion, we suspect that the powerful method of %
transforms is not well known to many physicists,
and it is our hope that the present work will help
to make it more widely known.

II. EIKONAL APPROXIMATION AND # TRANSFORMS
A. Eikonal approximation

The eikonal approximation to the amplitude for a
spherical potential V,(7) is (see Newton,” Eq.
18.32)

fom =i [ dvoregexpl2ivx,®)-1}, (@D
0
where the eikonhal “phase shift” is given by
¥X,(B) = -f drrV,(n(r? - b3)-V?
“b

Since the phase shift is proportional to the poten-
tial we have divided out a factor of y explicitly.
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To exhibit more clearly the behavior of f, as
p -~ we rewrite (2.1), making the change of vari-
ables b=pt, as

o .
ff—i%[ dttJ,(t)[e® AN 1] | (2.2)
(o]

Here we have introduced the variable

A =qp , ' (2.3)
and have rewritten the phase shift X, as

Af)=x,(pt)

. .=_f°° d'rot('r/p)(’i’z—pztz)_l/z
pt

- [(@a)E -1, (2.4)
&

which is independent of p, as our notation implies.

Finally, it proves convenient to rewrite (2.2)
using a single integration by parts. Using the
identity

xdo(x) = dix[le(x)]

in(2.2), we obtain as our final form for the eikonal
approximation to the screened amplitude

fo=fesrHR) , ‘ (2.5)
where ‘
HO)= [ dtn0dta’@es o (2.6)
A ;

Here we have assumed (what we shall check ex-
plicitly later) that the integrals converge and that
the end-point terms of the integration by parts are
zero. .

Since we shall always be concerned with values
of ¢ which lie in a compact interval excluding ¢ =0,
the limit of interest (p — =) is equivalent to the
limit A =pg - . Therefore, we must find the as-
ymptotic form of the integral (2.6) as X - .

B. & transforms

The integral (2.6) is in exactly the form required
to apply the method of % transforms. This method,
which is described in Chap. 4 of Bleistein and
Handelsman,® establishes the asymptotic form as
A=+ (or zero) of an integral of the form

)= [ " At - 2.7)
A |

If the two functions % and f have Mellin transforms
that are sufficiently well behaved then this integral
can be rewritten using the Parseval relation for
Mellin transforms as

Hm:(zni)-l['f"”dzx-M[h,z]M[f,i_z] . @8

Here M[ g,z] denotes the Mellin transform of a
function g,

M[g,Z]=f dtg(t)t*",
0
and the contour of integration in (2.8) is the ver-
tical line Rez = 7 in the complex plane of z. It will
be seen that the » dependence of H(\) has been iso-
lated in the term X~ in the integrand of (2.8).
Under suitable conditions (of convergence, etc.)
we can say that the larger the value of # in (2.8)
the more rapidly H(A\) goes to zero as X - «. Fur-
ther, if the integrand in (2.8) is meromorphic in
z, then we may be able to move the contour of in-
tegration Rez =7 in (2.8) to the right to some. posi-
tion Rez =s. Each time the contour crosses a pole
at z; we would pick up a term of the form x~%:
times the residue of the two Mellin transforms.
This would produce a finite asymptotic expansion
of the form

HQ) = - Zi: A"

+(27nf)'1fs.+io° dzx*Mh,zM[f,1-2], (2.9)

where B; is the residue of the two Mellin trans-
forms at the pole z;, and the sum runs over all
poles z; between the lines Rez =7 and Rez =s. (We
assume, as will prove to be the case, that all poles
are simple.)

To justify the asymptotic expansion (2.9) we shall
have to examine the behavior of the two Mellin
transforms as Imz -+ and establish their analytic
properties. These considerations are discussed in
some generality by Bleistein and Handelsman (Ref.
6, pp. 106-117). We shall examine them only as
they are needed in our calculations and shall lean
on the discussion of Bleistein and Handelsman.

III. SMOOTH SCREENING

We first use the formalism of Sec. II to estimate
the amplitude f, for a smoothly screened potential
V,= (v/7)a(v/p), where we require that the screen-
ing function a(¢) have four continuous derivatives,

a(E)eco,=) , (3.1)
that «(0) =1, ‘and that
aM(E)=0(E"2"¢) ast~w (3.2)

for n=0,1,2,3,4 and some € >0. As mentioned in
the introduction, these conditions could probably
be relaxed, but the precise set of necessary con-
ditions for our result is probably not very interest-
ing, since we are only working in an approximation
anyway.

We shall prove that as p - « the screened ampli-
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tude has the form
fo=fce® P +0(p~8) . (3.3)

Here f denotes the exact Coulomb amplitude (in-
cluding its correct phase), £(p) is the expected p-
dependent phase factor [Eq. (3.19) below and Ref.
8, Eq. (4.2)] and 8 is any number less than one.
The form (3.3) is uniform for all energies and mo-
mentum transfers in any closed finite intervals ex-
cluding E=0 and ¢ =0. As discussed in the Intro-
duction (and Ref. 1) this guarantees the desired
limit for the screened cross section

0, (dQ) =0 (dQ),

for any cone d2 excluding the forward direction.

It should be emphasized that, unlike the Born
result of Ref. 1, the eikonal result (3.3) includes
the exact Coulomb amplitude with all the correct
phase factors. This illustrates the marked super-
iority of the eikonal approximation in the present
context. Nevertheless, as far as cross sections
are concerned, -the two approximations give the
same results for the limits as p - =,

Let us now prove the result (3.3). As seen in
Sec. II the screened amplitude has the form (2.5),
fo=/csAHQ\), where fcp is the Coulomb amplitude in
Born approximation and A =pg. The function H(\)
is the Hankel transform

2

)= [ " at0f) (3.4)
()
where
FO)=tA"(1)e? 1D ' ‘ (3.5)

and the phase shift A(#) is given in terms of the
screening function a(£) by the integral (2.4).

To apply the method of % transforms to (3.4) we
must study the Mellin transforms M[J,,z] and
M[f,1-2z] of J, and f. The transform of J, is known
explicitly (Ref. 6, p. 414) to be

M[J,, 2]=2"""T(}z + 1))/TG(3 - 2)) . (3.6)

This is meromorphic for all z with poles at the
negative odd integers and has the asymptotic form
(Ref. 6, Eq. 3.2.41)

M[Jl;z]=o(yx—l) as lyl-.oo ’ ’ (3-7)

where z=x+14y.
The Mellin transform of 7 is defined by the inte-
gral

M[f,l—z]=j:dtt“f(t). (3.8)

The convergence of this integral depends on the
smoothness of f(¢) and its behavior at the end points
t=0and ., These in turn depend on the properties
of the phase shift A(f) and thence on the screening

function a/(¢). The calculation of these properties
is a straight-forward but tedious exercise, which
we sketch in Sec. V below.® The first results are
that, subject to conditions (3.1) and (3.2) on a, the
phase shift A has a continuous derivative and that

77 e% "8 [1 4+ O(tInt)] as t-0,
= { . (3.9)
o(t~2-¢) as t-oo
where . )
K=fwd§a’(§)ln2£ ) (3.10)

These results justify the integration by parts which
led to the form (2.5) for the amplitude, and show
that the integral (3.8) for the Mellin transform
M[f,1-2]is convergent and analytic in the strip

{-1<Rez<1} .

We now need to continue M[f,1 —z] into the re-

~ gion {Rez > 1} and to find estimates on its behavior

as Imz =y —». To this end we integrate (3.8) by
parts. In view of the behavior (3.9) it is natural to
rewrite (3.8) as '

Mif,1-21= [ ate=+31g0) (3.11)
(1]

where g(t) =t~%%(¢#), (that is, we factor out of f its

dominant behavior as £-0). The calculations in

Sec. V show that, againsubject to the smoothness

conditions (3.1) and (3.2), g(¢) can be differentiated

twice and satisfies

O(lnf) ast-0,
g'(t)= (3.12)
O(t=%¢) as t=,
O(t™Int) as t-0,
") = (3.13)
O(t™-€) as t=.

Armed with these estimates we see easily that
(3.10) can be integrated by parts twice to give

1
(2 =1=2y)(z =2 = 27y)

M[f,l_z]=

Xf ar == gn(t) | (3.14)
1]

The importémt featuresk of (3.14) are as follows:
First, the integral is convergent and analytic in
the larger strip

{-1<Rez<2} . (3.15)

Thus (3.14) defines the continuation of M[f,1 —z]
as a meromorphic function into this wider strip.
This continuation is sufficient for our purposes.
Second, the continuation (3.14) of M[f,1-2z] has a
simple pole at z =1+ 24y whose residue is easily
evaluated as —g(0) = —exp(2iyK). Finally it is clear
from (3.14) that as Imz =y - o,



M[f,1-2z]=0(y?) as |y| = (3.16)

anywhere in the strip (3.15).

With these properties of the Mellin transforms
of J; and f we are ready to estimate the integral
H(\) = [, dtJ,(\t)f(#). First it is easy to check that
the transforms are well enough behaved to allow
us to rewrite H(\) using the Parseval relation (2.8)

HQ)= (2ni)’-1f+mdz AEM[Ty,zM[f,1-2] ,

r=ic
(3.17)

provided the contour Rez = lies in the strip
{-1<Rez<1}. [For conditions which justify the
Parseval relation (3.17) see Ref. 6, p. 108.]

The asymptotic forms (3.7) and (3.16) show that
the contour in (3.17) can be moved to the right as
close as we please to the line Rez =2, In doing
this we must pass the simple pole of M[ f,1-z] at
z=1+27y. We therefore obtain the finite asymp-
totic expansion [cf. (2.9)]

T(1+dy)

Ta=i) g% YKy ~(1*2iY) L o(x-%) (3.18)

H(\)=2%7Y

for any s<2. The ratio of T" functions here will be
recognized as exp(2i0,), where o, is the /=0 Cou-
lomb phase shift. The number K is given by (3.10)
and is easily rewritten as i

yK=v1np +¢(p) +0(p~Inp) ,
where £(p) is the p-dependent phase factor intro-
duced in Ref. 8, Eq. (4.2),

()= [ / dra(r/p)/r. (3.19)

If we now replace X by pg in (3.18) and substitute
into the amplitude f,=f., AH() we find

fp=fCBezic:Oe—2iyln(q/z)ezig(p) + O(p-ﬂ)

=f e+ 0(p™?)

for any B<1. This is exactly the required result
(3.3).

IV. SHARP CUTOFF

If the screening function «(£) is the sharp cutoff
a)=61-¢),

then the corresponding eikonal phase shift (2.4)
can be explicitly evaluated as

Int -In[1+(1-£)Y2], t<1,
A(t)= :
0 , t>1.

We can again put the amplitude f‘J =fegAH () where
H()) is now the Hankel transform

(4.1)
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HQ) = f "t L) (4.2)

and f(#) can be calculated expliéitly as
fO =1 =)V 14+ (1 =) V2]3Y | (4.3)

There are two important differences between (4.2)
and the corresponding integral (3.4) for the smooth
case. First the upper limit of integration in (4.2)
is t=1 not =« as in (3.4); second, the function
f(#) has a singularity at £=1. These mean that
t=1 may be (and, in fact, is) a critical point (Ref.
6, p. 84). As we shall discuss further, it was the
neglect of this extra critical point that lead Glauber
to his incorrect conclusion that o,~0 ¢ as p - for
the sharp cutoff.

As A -, we must anticipate that H(\) in (4.2)
will have contributions from both of the critical

_ points £=0 and 1. It is convenient to isolate these

contributions using the method of neutralizers.
We let v(f) be any C” function such that

® 1 in a neighborhood of £=0
v(t) = ,
0 in a neighborhood of {=1,

and write

F@ =@ (@) +£(D[1 - v(®)]
=foll) +£,(2) .

We can then make,corre’sponding decompositions
of H(A) and of f,; for example,

HQ\) =Ho(7\) +H1(7\) s

where H;(\) = [¢ J,(\#)f;(#)(i=0 or 1) and the two
terms H, and H, can be analyzed separately.

The contribution to the amplitude from the criti-
cal point at £=0 is determined by the function
fo(#). From the explicit form (4.3) it is easy to
see that f,(f) has all the properties of the function
£(t) for the smooth cutoff discussed in Sec. II. Ac-
cordingly the corresponding contribution fg to the
amplitude has exactly the form found in Sec. III:

Fo=fcet® +0(p™") (4.4)

for any g<1.
The contribution from the critical point at =1 is
given by the function

m0= [ "t 005,(8)

Because f,(f) =0 in a neighborhood of {=0, we can
use the large argument expansion of Jj,
J(t) = (2/mxt)"/? cos(\t — 37/4) + O ~/?)

which is uniform in the region where f,(¢)# 0.
This gives
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H,(\)= (2/’17)\)”"‘]1 dt cos(\t — 37/4)t~ Y%, (1)

(1]
+O("¥?), (4.5)

The singularities of the function ¢Y/%,(t) at t=1
originate in the factors (1-#)2in (4.3). It is con-
venient to move these singularities to the origin
by substituting 1 —f=«. We can then isolate the
dominant singularity [the first factor (1 - £)~/?] by
writing

Y2 (1) =u g ()

The function g(«) can be written down explicitly
but all we shall need to know is that g(0)=2""2,
that g(x)=0 in a neighborhood of =1, and that.
g(u) is infinitely differentiable on (0, 1] with

g'(w)=0w"?) as u~0. (4.6)

[The singularity at #=0 comes from the factor .
(1-28%Y2in (4.3).]

If we now split the cosine in (4.5) as the sum of
two exponentials, we obtain

1
H1(7\)=(Z/ﬂ)\)l/zexpi(%yr_)\)f duu"l/ze‘x"g(u)
0

+(c.c. and y - —y) + O ~¥?) | (4.7)

where the second term is obtained from the first
by complex conjugation and the replacement of v
by —y. The integral (4.7) can be estimated by a
method of Erdelyi.'® Since g(u) is differentiable,
we can integrate by parts using as integral of
u~ (/D ¢iM the function

\ u
h(u)=f du/u/-l/zeixu, . ‘ (4.8)
joo

This function is easily seen to satisfy
n(0) = —€'™/*(m/X)V? ,
and we show in Sec. V that

|7 (@)] <K7\"‘1u"‘->1/2 (4.9)

for any n>0.
If we now perform the integration in (4.7) by
parts, we find

1
f duu~"%ei  g(y)
0

=™/ 4(g/20)Y/? —fl dun(u)g'(u) . (4.10)
0

Using the bounds (4.6) and (4.9) it is easily seen
that the remaining integral is O(\~**") for any
7n>0. Inserting (4.10) into (4.7) we obtain

H,(\)==x""cosx + O "~¥/2) .

Finally, the corresponding contribution to the am-
plitude is

fp =fcsrH,(0) .
= —fcp cospg + O(p"~1/?) . (4.11)

We have now estimated both conti'ibutions, (4.4)
and (4.11), to the amplitude for the sharp cutoff.
We can combine them to give the final answer

—£0 1
fp _fp+fp ‘
=fce® ) _ oy cospg +O0(p™V?) (4.12)

for any 7n>0. This answer is very similar to the
Born result of Ref. 1, and all of the discussion of
Ref. 1 applies to it. The first term is the desired
Coulomb amplitude (including all the correct
phases, as in the smooth case). The second term
has precisely the form found for the Born approxi-
mation. If we evaluate the scattered wave for a
fixed incident packet ¢(p) then the contribution
from this.second term goes to zero as p - »,!!
However, the measurement of the cross section
0, involves many different packets ¢,(P) with ran-
dom impact parameters b. We emphasized in Ref.
1 that, however large we make the cutoff radius p,
certain packets pick up an appreciable scattered
contribution from the second term in (4.12). For
a given direction of observation 6, the packets' for
which this contribution is appreciable have

b=pcos(6/2) . (4.13)

This is just the condition that the packets undergo
specular reflection off the discontinuity in the po-
tential at »=p, as discussed in Ref. 1 (Fig. 1 and
following Eq. 2.14).

However large we make the cutoff radius p there
are two contributions to the observed cross sec-
tion 0,. Those packets with small b contribute
through the first term in (4.12); those with b satis-
fying the specular condition (4.13) contribute
through the second term. These two contributions
to o, can be evaluated as in Ref. 1. The first is
exactly o, while the second gives the additional
30 Thus 0,~ 30 exactly as in the Born result
of Ref. 1. We see that, as anticipated, it was the
neglect of the second term in (4.12) which led
Glauber to his incorrect conclusion that So
-~ fcexp(2i¢) and hence that 0,—~0 for the sharp
cutoff.

V. SOME PROOFS
A. Eikonal phase for smooth screening

We need the behavior as £ -0 and « of the phase
shift A(t) for a smooth screening function a(»/p)
satisfying (3.1) and (3.2). The integral (2.4) which
defines A(t#) can be rewritten as

0=~ [ dami -1



Since a is four times differentiable and satisfies
the bounds (3.2) it is immediately clear that A(f)
is likewise four times differentiable with deriva-
tives given by

A0 =~ ["anmraanm -0 (6.0)

Inserting the bounds (3.2) for (™ we obtain the
bounds

A () =0(@F"2""¢) ag t—w ' (5.2)
for n=0,...,4.

To find the behavior of A?(¢) as ¢t~ 0 we rewrite
(5.1) as

A () = g7 ft TG - ). (5.9)

We next remark that the following lemma is easily
proved.
Lemma. Let

G(t)=ftmdsg(£)(52—t"’)-1/2,

where g(£) is C* on [0, =) and both g(£) and g'(£)
are O((71"€)as £ = », Then

G() = —g(0) Int — f " d g'(£) In2¢ + O(¢ Inf)

as t—-0,

Repeated application of this lemma to A(f) and its
first three derivatives gives the following esti-
mates as t-0:

A(f)=Int+ K+ O(tInt) , (5.4)
where K is given by (3.10)
A'(t)=t "1+ 0(tInf)] , (5.5)
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A"(H)=~t"?[1+0(tInt)] , (5.6)
A" =2¢-9[1+0(¢1nd)] . (5.7)

The function f(#) of Sec. III was defined in terms
of A(#) by (3.5), while g(¢) was defined as
t~%1Y7(#). Insertion of the bounds (5.2) and (5.4)-
(5.7) into these definitions leads, after some
straightforward algebra, to the bounds (3.9),
(3.12), and (3.13) used in Sec. III.

B. Bound used for sharp cutoff -

The function % (x) as defined in (4.8) can be re-
written as

h(u) = —z'e”"‘f dve (u+iv)~V? ,
0
Therefore

k| < [ dve(w?+ o)1 (5.8)
1]

For any two positive numbers x and y, we note

that x+y=> x'~¢y¢ for any € with 0se<1. Insert-

ing this inequality (with x=u?, y =%, and € =2n)

into (5.8) we find

|n(u)] < )\""u"'l/zf dwe “w™"
0

which is the bound (4.9).
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