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Abstract The fourth-order Runge–Kutta method is used to

numerically integrate the equations of motion for a fastpitch

softball pitch and to create a model from which the trajectories

of drop balls, rise balls and curve balls can be computed and

displayed. By requiring these pitches to pass through the strike

zone, and by assuming specific values for the initial speed,

launch angle and height of each pitch, an upper limit on the lift

coefficient can be predicted which agrees with experimental

data. This approach also predicts the launch angles necessary

to put rise balls, drop balls and curve balls in the strike zone, as

well as a value of the drag coefficient that agrees with ex-

perimental data. Finally, Adair’s analysis of a batter’s swing is

used to compare pitches that look similar to a batter starting

her swing, yet which diverge before reaching the home plate,

to predict when she is likely to miss or foul the ball.

Keywords Softball � Pitching � Differential equations �
Runge–Kutta

1 Introduction

The game of fastpitch softball has been played since the

late 1800s and is currently a popular women’s sport in

American high schools and colleges. Although the

trajectories of many different spherical sports balls have

been investigated [1], those of a fastpitch softball have only

recently begun to be studied [2, 3].

In this paper, we study the dynamics of pitches in

fastpitch softball. At first, one might not expect the prop-

erties and motion of a fastpitch softball to be much dif-

ferent from those of a major league baseball because both

have the same Reynolds number for the speeds at which

they are usually thrown. For example, experimental data

confirm that the drag coefficient for a fastpitch softball is

the same as that of a major league baseball. On the other

hand, there are several significant differences between

fastpitch softballs and major league baseballs. For exam-

ple, the former has raised seams, while the latter has flat

seams. Since the seams of a spinning ball affect the flow of

air around it, and since the spin speed that can be given to a

fastpitch softball is different from that which can be given

to a baseball, one might expect the degree to which each

drops, rises, or curves to be different. Furthermore, there is

some disagreement as to how the spin and linear speeds of

a baseball affect the force that makes it curve. More

specifically, the curve depends on the Magnus force, which

itself depends on the lift coefficient of the ball. Several

different functional dependencies of the lift coefficient

have been proposed, and this is a topic that is still being

investigated.

Thus, the lift coefficient of a fastpitch softball cannot be

readily determined from the lift coefficient of a major

league baseball, which means that the trajectories of major

league baseballs and fastpitch softballs could have sig-

nificant differences. This, in turn, could affect the strategies

used in each game and the skills and perceptions a player

needs to be successful.

To investigate these and other aspects of fastpitch

softball pitches, a model based on Newton’s equation is
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presented that simulates their motion. By assuming rea-

sonable values for the angle, speed and height off the

ground of a softball as it leaves the pitcher’s hand, we

compute and display the trajectories of rise balls, drop balls

and curve balls. The model is then used to predict an upper

bound on the lift coefficient of a fastpitch softball and show

that this bound agrees with experimental data. The model

also predicts the launch angles necessary for various

pitches to pass through the strike zone, as well as a value of

the drag coefficient which is consistent with experimental

data. Using the time analysis of a batter’s swing presented

by Adair [4], we then discuss when a given pitch has a

good chance of fooling a batter into starting her swing

before she can accurately assess the trajectory of the ball

and thus cause her to miss (or foul) it. Finally, we discuss

how the agreement of our model with experimental data

gives us confidence that it can be used to predict accurate

trajectories of pitches thrown with different initial launch

speeds, launch angles, or more general orientations of the

axis of rotation.

2 Assumptions and initial conditions

The coordinate system used in our analysis has the x axis along

a horizontal line from the pitcher to the home plate, the y axis

perpendicular to the ground and the z axis perpendicular to the

x and y axis according to the right hand rule. The origin of the

coordinate system is on the ground directly beneath the point

where the ball leaves the pitcher’s hand. The pitch is thrown

from just above the origin at an initial height y0, so the coor-

dinates of the launch point are x0 ¼ 0; y0; z0 ¼ 0.

The angle u is the angle the velocity vector makes with

the z axis, and h is the angle made with the x axis by the

projection of the velocity vector in the x� y (vertical)

plane. Note that a pitch which remains in the vertical plane

(and does not curve) has a constant angle of u ¼ 90�. If the

pitch is released perfectly horizontally (parallel to the

ground) it has h ¼ 0�. A nice illustration of this coordinate

system (shown with the y axis in the horizontal, rather than

the vertical direction) is given by Arnold [5].

We model the motion of the fastpitch softball by as-

suming that once the ball leaves the pitcher’s hand, it is

acted upon by three forces: gravity, air resistance and the

Magnus force. The magnitude of the force of gravity is

Fg ¼ mg ; ð1Þ

where m is the mass of the softball and g is the gravita-

tional acceleration, whose direction is along the negative y

axis.

The magnitude of the force of air resistance is expressed

in the standard form [6]

Fd ¼ 1

2
CDqAv

2; ð2Þ

where CD is the drag coefficient, A is the cross-sectional

area of the ball, v is the speed of the ball and q is the

density of air, which is 1:2 kg/m3 for temperatures within

the range of 16–32�C (60–90�F) [7]. The drag force acts in

the direction opposite to that of the velocity.

The standard expression for the magnitude of the

Magnus force is [6]

FM ¼ 1

2
CLqAv

2; ð3Þ

where CL is the lift coefficient. The Magnus force is

created by the spin of the ball and, depending upon the

direction of the spin axis, leads to pitches that rise,

curve or drop as they travel from the pitcher to the

home plate. The Magnus force acts in a direction per-

pendicular to both the angular and translational velocity

of the ball. More precisely, if x is the angular velocity

vector, then the Magnus force is in the direction of

x� v.

Putting these forces into Newton’s second law, we find

m _vx ¼� 1

2
CDqA vx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
x þ v2

y þ v2
z

q

; ð4Þ

m _vy ¼� mg� 1

2
CDqA vy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
x þ v2

y þ v2
z

q

ð5Þ

þ 1

2
CLqA v2

x þ v2
y þ v2

z

� �

sin a; ð6Þ

m _vz ¼� 1

2
CDqA vz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
x þ v2

y þ v2
z

q

ð7Þ

þ 1

2
CLqA v2

x þ v2
y þ v2

z

� �

cos a: ð8Þ

In these equations, the superscript dot signifies a time

derivative. The x component of the velocity is denoted by

vx and similarly for the y and z components. The direction

of the Magnus force vector is specified by the angle a,

which lies in the y� z plane with a ¼ 0 when the Magnus

force vector points along the positive z axis.

The initial speed of the pitch is vi, and the initial values

for vx, vy and vz are:

vx;i ¼ vi sinu cos h

vy;i ¼ vi sinu sin h

vz;i ¼ vi cosu:

The fastpitch softball is an optic yellow sphere with at least

88 raised red thread stitches. Although the dimensions of

softballs vary slightly, we assume that each softball has a

circumference of 0:305 m (12 in.), a radius of 0:0483 m

(1:9 in.) and a mass of 0:184 kg (which corresponds to a

weight of 6:5 ounces) [8].
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Some of the initial conditions will be the same for all of

the pitches considered. The front of the softball pitching

rubber (the side closest to the batter) is 13:1 m (43 ft) from

the back of the home plate [8] and, unlike in baseball where

there is a pitcher’s mound, the rubber from which fastpitch

softball pitchers throw is at the same level as the batter. A

pitcher is permitted to take one stride towards the batter

during her delivery. Since precise stride lengths vary by

pitcher, and the depth of the strike zone is 0.43 m (17 in.),

our model assumes that every pitch travels 12:2 m (40 ft) in

the direction of the x axis during its flight from the pitcher

to the strike zone.

The ball is released from a point just above the knee of

the pitcher. As she steps forward to deliver a pitch, her

knee drops so we assume that the release point is 0:46 m

(1:5 ft) off the ground. This value of y0 is close to those

recorded by Nathan [3] (1:8 ft, r ¼ 0:2 ft) from four

fastpitch softball pitchers. Finally, the initial speed of the

softball is assumed to be 29 m/s (65 mph), which is con-

sistent with values measured by Nathan [3] (vi ¼ 65 mph,

r ¼ 5 mph) in over 3500 pitches and with values reported

by others.1

The next step is to determine a numerical value for the

drag coefficient CD. If a fastpitch softball is assumed to be

a scaled up major league baseball, then both the baseball

and the softball will have the same drag coefficient when

they have the same Reynolds number

Re ¼
qDv
l

; ð9Þ

where D is the diameter of the ball and l ¼ 1:85 � 10�5 N

s/m2 is the dynamic viscosity of air [6]. The diameter of a

major league baseball is 0:074 m (2:9 in.), so a softball

moving at 29 m/s (65 mph) should have the same drag

coefficient as a baseball moving at 38 m/s (85 mph).

Since the drag coefficient for a baseball moving with a

speed of 38 m/s (85 mph) is about 0:33,2 this value of CD

can be used in our equations. This number falls within the

range of drag coefficients for fastpitch softballs found ex-

perimentally by Nathan (CD ¼ 0:31; r ¼ 0:04, private

communication), which supports the assumption that in

some ways a fastpitch softball behaves like a scaled up

baseball (even though the softball has raised seams and the

baseball has flat seams).

Continuing with the assumption that a fastpitch softball

can be treated as a scaled up baseball, baseball pitches lose

approximately 8–10 % of their speed during their flight [4].

Using Fig. 2.1 in [4], this corresponds to a change in drag

coefficient of approximately 0.02, which does not

significantly alter the value of CD in Eq. (2). Thus, the drag

coefficient can be assumed to be constant.

The dimensions of the strike zone vary from batter to

batter. In this paper the strike zone is assumed to start 0:46

m (1:5 ft) above the ground (at the height of the top of the

batter’s knees) and end 1:1 m (3:75 ft) above the ground (at

the height of the batter’s forward armpit). The width of the

strike zone is taken as the width of the home plate (0:43 m

or 17 in.) plus the diameter of a softball (0:10 m or 3:8 in.),

since the rules specify that a pitch is a strike if any part of

the ball crosses over the width of the home plate. Thus, the

width of the strike zone is taken to be 0:53 m (20:8 in.).

The strike zone provides the boundary for pitches in this

analysis; that is, all pitches are required to pass through the

strike zone.

The last parameter to discuss is the lift coefficient CL.

For baseballs, the degree to which CL is affected by the

orientation of the stitches with respect to the spin axis of

the ball is not completely understood. Some analyses ig-

nore the effect of seam orientation on the lift coefficient

[10–12], while others indicate that there are at least a few

cases in which the orientation of the seams can have a

substantial effect on CL [13].

In this paper, the model determines the range of allowed

values for CL for fastpitch softballs. A C?? program

implementing the fourth-order Runge–Kutta method is

used to numerically integrate the equations of motion (4)–

(8), thereby obtaining the position of the softball as a

function of time. Given that many of the input parameters

are accurate to only two significant digits, a step size of

0:02 s is appropriate because smaller step sizes produce

identical values (to two significant digits) for the calculated

quantities of interest.

In the program, the fixed parameters discussed above are

entered first. Then, h and u are chosen for the pitch of

interest, and the program varies CL from a minimum of

0:00 to a maximum of 1:00 to find the values of CL which

put the ball in the strike zone for those particular values of

h and u.

3 Results

3.1 The drop ball

In the case of a drop ball, the Magnus force points in the

negative y direction (a ¼ �90�). Since the only other force

acting in the y direction is gravity, the softball will only

pass through the strike zone if there is a positive launch

angle h.

Table 1 shows the conditions necessary for a drop ball to

pass through the strike zone for a range of launch angles.

For example, if the drop ball leaves the pitcher’s hand at an

1 The Lisa Mize Fastpitch Academy reports the range of speeds for

college fastpitch softball pitches as 59–70 mph [9].
2 See page 8 of Reference [4].
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angle of h ¼ 6:0�; then the lift coefficient must be between

0:00 and 0:16 for the ball to cross the home plate in the

strike zone. The reason there is a range of acceptable

values for the lift coefficient is because the ball will be a

strike if it passes anywhere between the top and bottom of

the strike zone.

Figure 1 shows the trajectory of a drop ball with a

launch angle of h ¼ 6:0� and a lift coefficient CL ¼ 0:15.

Note that the scale on the y axis is smaller than the scale on

the x axis, so the vertical part of the trajectory displayed in

the figure is somewhat exaggerated. In Fig. 1, and in all

subsequent figures, x ¼ 0 m is the x-coordinate of the point

at which the pitch is released from the pitcher’s hand and

x ¼ 12 m (40 ft) is the x-coordinate of the end of the pitch.

3.2 The rise ball

In the case of a pure rise ball, the Magnus force points in

the positive y direction (a ¼ 90�). Table 2 shows the range

of values of CL; for which the ball will pass through the

strike zone for various values of the launch angle h. When

h� 8�; there is no (positive) value of CL for which the

pitch will be a strike.

For h ¼ 3:0� and CL ¼ 0:20, the pitch stays in the strike

zone but, as Fig. 2 shows, the ball does not continue to rise

throughout its complete trajectory. Figure 3 shows a rise

ball pitch with h ¼ 6:0� and CL ¼ 0:18 that does rise

during its whole trip to the home plate.

3.3 The curve ball

In the case of a pure curve ball, the Magnus force points in the

negative z direction (a ¼ 180�) and the softball curves to the

pitcher’s left. (By calling this pitch a ‘‘curve ball’’ we are im-

plicitly assuming the pitcher is right-handed. If the pitcher were

left-handed, this same pitch would be called a ‘‘screw ball’’).

Table 3 shows the conditions necessary for a curve ball

to pass through the strike zone. In each case we have as-

sumed a value of h which keeps the ball within the strike

zone’s vertical dimensions.

Pitches with values of u less than 90� begin with a com-

ponent of velocity in the positive z direction, opposite to the

direction in which the ball will curve, which means they first

travel slightly to the pitcher’s right before they curve to the

left. The trajectory of a curve ball with launch angles h ¼
4:5� and u ¼ 90�, and a lift coefficient CL ¼ 0:15, is shown

in Fig. 4. We stopped calculating trajectories when u ¼
87:5� because fastpitch softball pitchers rarely produce a

pitch with a value of CL higher than about 0:30.

3.4 Other pitches

We can also compute and graph trajectories of pitches

with the Magnus force vector pointing in any direction a in

Table 1 Conditions for drop

ball pitches
h (�) Range of CL

5.0 0.00–0.05

5.5 0.00–0.11

6.0 0.00–0.16

6.5 0.00–0.22

7.0 0.00–0.27

7.5 0.00–0.33

8.0 0.04–0.38

8.5 0.10–0.44

9.0 0.16–0.50

9.5 0.21–0.56

10.0 0.27–0.62

0 10 20
x (ft)

y
(f
t)

30 40
0

1

2

3

4Fig. 1 The trajectory of a 29 m/s

(65 mph) drop ball with an initial

angle h ¼ 6:0� and a lift

coefficient CL ¼ 0:15

Table 2 Conditions for rise ball

pitches
h (�) Range of CL

0.0 0.51–0.85

1.0 0.40–0.73

2.0 0.29–0.62

3.0 0.18–0.51

4.0 0.06–0.40

5.0 0.00–0.29

6.0 0.00–0.18

7.0 0.00–0.07
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the y �z plane and any valid launch angles h and u, which

we can think of as ‘‘rising screw balls’’, ‘‘falling curve

balls’’, etc. Indeed, one way our model can be used is to

display the trajectories of these pitches for various values

of CL to estimate how much spin would be necessary to

keep them in the strike zone.

4 Striking out the batter

We can use our results in conjunction with the time ana-

lysis of a typical batter’s swing given by Adair [4] to get a

better understanding of when a batter is most likely to miss

or foul a pitch that passes through the strike zone. Our

approach is to find out where the ball is when the batter

must initiate her swing. If one type of pitch (say a rise ball)

cannot be distinguished from another type of pitch (say a

drop ball) before this time, then the batter is likely to miss

or foul the ball as it passes over the home plate. Similarly,

if a curve ball has not begun to curve when the batter must

begin her swing, then she is also likely to miss or foul it.

The first step in our approach is to determine the total

time the ball is in the air as it travels from the pitcher to the

home plate. Numerical integration of Newton’s equations

shows that, for a softball whose initial speed is 29 m/s (65

mph) and whose drag coefficient is 0.33, this time is 0.45 s.

Assuming no drag force, so the softball travels at a constant

speed of 29 m/s (65 mph) from its release point to the home

plate, the time of flight is 0.42 s.

Note that the time for a baseball traveling at a constant

speed of 38 m/s (85 mph) to reach the home plate, which is

17 m (56 ft) away from the point where the pitch is re-

leased, is also 0:45 s. Similarly, if the baseball is traveling

at 40 m/s (90 mph), it takes 0.42 s to reach the home plate.3

Thus, a softball player must judge and react to a pitch in

essentially the same short time interval as a baseball player,

and Adair’s analysis of a baseball batter’s swing is also

valid for the swing of a fastpitch softball player.

Adair’s analysis of what happens during the batter’s

swing separates the batter’s complete response into four

parts: Looking, Thinking, Action, and Batting. The Look-

ing portion of the swing takes about 75 ms and is the time it

takes the batter to cognize that the ball has left the pitcher’s

hand. The next part of the batter’s process is the Thinking

portion. During this part of the swing, which takes about 50

ms, the brain estimates the ball’s trajectory. The next part

of the batter’s process is the Action portion, which takes

0 10 20 30 40
0

1

2

3

4

x (ft)
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Fig. 2 The trajectory of a 29 m/s

(65 mph) ‘‘rise ball’’ with an

initial angle h ¼ 3:0� and a lift

coefficient CL ¼ 0:20. Note,

however, that this pitch does not

rise throughout its complete

trajectory.
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Fig. 3 The trajectory of a 29 m/s

(65 mph) rise ball with an initial

angle h ¼ 6:0� and a lift

coefficient CL ¼ 0:18. For these

values of h and CL; the ball rises

throughout the whole trajectory

Table 3 Conditions for curve

ball pitches
u (�) Range of CL

90.5 0.00–0.21

90.0 0.00–0.27

89.5 0.06–0.32

89.0 0.12–0.38

88.5 0.17–0.44

88.0 0.23–0.49

87.5 0.29–0.55

3 See page 60 of Reference [4] for more details.
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about 25 ms. This is the time period during which the brain

sends a message to the muscles to begin the swing. Finally,

there is the Batting portion of the process, which takes

approximately 150 ms, during which the batter sets the bat

in motion. Adair says an experienced player can make

minor adjustments in the motion of the bat for about the

first 50–100 ms of the Batting portion of the swing, but

these adjustments most likely will not result in a solid hit if

the trajectory is not what the batter expected at the end of

the Action portion of the swing.

Figure 5 shows the locations of a rise ball and a drop ball

during each of the four parts of the batter’s process. To

compute this, we first determined the time at which the ball

would be over the home plate and called this the end of the

Batting portion of the swing. Working backwards from this

time determines where the ball was 50 ms earlier, at the

beginning of the Batting portion, and continues in this way

to determine where the ball is at the beginning of the Action,

Thinking and Looking phases. Comparing several pairs of

rise ball and drop ball pitches yielded a pair in which both

pitches ended in the strike zone at very different heights, yet

throughout the batter’s decision process described by Adair

the pitches differ by less than 0:10 m (4 in).

Figure 5 shows how hard it is for a batter to assess the

trajectory of a pitch in time to get a solid hit. As the figure

shows, the batter must commit to her swing at the end of

the Action portion of her process, when the drop and rise

ball trajectories are almost indistinguishable. When the

balls cross the home plate, however, the two trajectories are

over 0:30 m (1 ft) apart, so if the batter has made the wrong

choice at the beginning of her swing she most likely will

miss or foul the ball.

0
1
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–2 0 2
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01020 30
40–202 0
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z (ft)
z (ft)

y (ft)

y (ft)

(a)

(b)

Fig. 4 The trajectory of a 29 m/s (65 mph) curve ball with h ¼ 4:5�, u ¼ 90� and a lift coefficient CL ¼ 0:15. a A view of the trajectory from

above. b The batter’s view of the trajectory. Note that in both cases the scale on the x axis is larger than the scales on the y and z axis

0 10 20 30 40
0

1

2

3

4

x (ft)

y
(f
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Fig. 5 The trajectory of a 29 m/s (65 mph) rise ball with a launch

angle h ¼ 4:0� and a lift coefficient CL ¼ 0:30 together with the

trajectory of a drop ball with a launch angle of h ¼ 7:0� and a lift

coefficient CL ¼ 0:25. The first dashed line, at 4:6 m (x ¼ 15:2 ft),

shows the location of the ball at the last possible time by which the

batter can start the Looking phase. The dashed lines at 6:7 m

(x ¼ 22:0 ft), 8:1 m (x ¼ 26:5 ft) and 8:7 m (x ¼ 28:7 ft) show the

respective last locations of the ball at which the batter can start the

Thinking, Action and Batting phases. Given the scale on the y axis,

the locations of the two pitches are just inches apart, almost

indistinguishable to the batter, from the time the pitcher releases

the softball until the time just before the batter initiates her swing.

However, when the pitches cross the home plate, they are over a foot

apart
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Trajectories such as those shown in Fig. 5 can be created

and compared to see how likely it is that a batter will have

difficulty distinguishing one pitch from another by the time

she has to commit to a specific swing. They also can be

used to show the trajectory of a single pitch, such as a

curve ball, to see where the ball is when a batter must

initiate her swing. As such, if the initial conditions for a

specific pitcher (her launch speed, launch height, etc.) are

used in the program, figures like Fig. 5 could be useful in

predicting whether her pitching will be effective against an

opposing team.

5 Lift coefficients for a fastpitch softball

Although Eqs. (2) and (3), in which the drag and lift co-

efficients are defined, have the same form, the coefficients

themselves have different functional dependencies. For

example, whereas the drag coefficient depends upon

properties intrinsic to the ball and the air through which it

travels, heuristic arguments [4, 6] suggest that the lift co-

efficient should depend upon the spin x of the ball and its

linear speed v through the air, both of which can vary from

pitch to pitch. Consequently, although the drag coefficient

should be essentially the same for all pitches thrown at

roughly the same speeds, we expect the lift coefficient to

vary, and more generally, to lie within a bounded range

determined by the maximum and minimum values of the

spin and initial speed given to the ball.

Nathan [6] investigated lift coefficients for baseballs,

first extracting values of CL from data and then examining

their functional dependence on the Reynolds number and a

quantity called the ‘‘spin factor’’, which is defined as

S ¼ xR=v. He found that for 75 mph \v\100 mph and

0:15\S\0:25, which are the ranges most relevant to

baseball, CL is independent of Reynolds number but does

depend upon S. Nathan says his data are in ‘‘excellent

agreement’’ with the parameterization of Sawicki et al. [10]

CL ¼ 0:09 þ 0:6S ð10Þ

when S[ 0:1, and

CL ¼ 1:5S ð11Þ

when S� 0:1.

To investigate how CL and S are related for fastpitch

softballs, typical values for a softball’s angular speed x are

needed. RevFire� makes equipment which they claim

measures x for fastpitch softballs to within �0:25

revolutions per second [14–16]. Their measurements show

that the average value of x for drop balls is 20 revolutions

per second (rps), for curve balls and screw balls 21 rps and

for rise balls 22 rps. More generally, they found that for

most pitches 17 rps \x\32 rps. Using these values of x

it can be shown that the average value of S is about 0:22 for

all four types of softball pitches when they are moving with

a speed of 65 mph, and that S is within the range

0:18\S\0:34. Note that this range of values has sig-

nificant overlap with the corresponding range [mentioned

above Eq. (10)] for baseballs.

Because the range in which the spin factor S falls for a

fastpitch softball has significant overlap with the range of S

for a baseball, we will assume the allowed values of CL for

a fastpitch softball can also be computed from Eqs. (10)

and (11). Making this assumption, the average value of CL

for drop balls, rise balls, screw balls and curve balls

moving at 29 m/s (65 mph) is found to be approximately

0:22, and CL falls within the range 0:20\CL\0:29.

Nathan (private communication) reports that a preliminary

analysis of data taken from over 3500 fastpitch softball

pitches of all kinds, thrown by four pitchers, found a

similar upper bound for CL (about 0:30) , although a

somewhat lower mean (0:13; r ¼ 0:06). Of course, the

mean is determined by how many of each type of pitch was

thrown, which was not recorded.

The fact that the model predicts CL to be bounded above

by 0:30, and that this expectation is in agreement with

experimental data, allows us to use the results presented in

Tables 1, 2 and 3 to draw several conclusions about launch

angles. First, according to Table 1, drop balls which pass

through the strike zone cannot have launch angles greater

than about ten degrees. This prediction is consistent with

the data presented by Nathan [3], which showed that h has

an average value of 7:4� with a root mean square value of

2:3�. Note that Nathan’s launch angle data were taken for

all types of pitches, and not just drop balls. Second, ac-

cording to Table 2, rise balls must have a nonzero launch

angle to pass through the strike zone and this angle must be

greater than 2�. This prediction is consistent with the data

presented by Nathan [3], which show that there were no

launch angles h less than two degrees. Third, according to

Table 3, a pitch curving to the pitcher’s left must be

launched with a horizontal angle less than 2:5� to the right

of the line between the pitcher and home plate if it is to

have a chance of passing through the strike zone. At pre-

sent, there are no data with which to compare this

prediction.

6 Conclusion

This paper presents a model based on Newton’s Laws from

which the trajectories of various pitches in fastpitch soft-

ball can be calculated and displayed. This model is used to

graph the paths followed by drop balls, rise balls and curve

balls for different choices of launch angles and lift coeffi-

cients, and to determine which combinations of these
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parameters result in pitches that pass through the strike

zone. The model is then used, along with an analysis pre-

sented by Adair, to predict when a pitch is likely to be

missed or fouled by a batter. Finally, lift coefficients CL are

considered for fastpitch softballs. The model predicts that

CL should be bounded above by 0:30, a result confirmed by

recent experimental data. This upper bound is then used to

place limits on the launch angles for which various pitches

will stay within the strike zone and these limits agree with

experimental data.
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