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POTENTIAL

impossible because such a decay would violate mo-
mentum conservation; however, the single photon
decay of the *S; state is possible if another particle
is present to carry the recoil momentum. The proba-
bilities of direct decays into four or five photons are
much smaller by a factor of order o? (the fine struc-
ture constant squared) and have not yet been ob-
served experimentally. The mean lifetimes of para-
positronium and orthopositrenium are about 0.1 ns
and 140 ns, respectively.

Energy levels above the ground state are pro-
duced with much smaller probability, making stud-
ies of these levels more difficult. Photons emitted
from the n = 2 to » = 1 transition, corresponding to
the Lyman-a spectral line of hydrogen, were re-
ported by Karl F. Canter, Allen P. Mills Jr., and
Stephan Berko in 1975, along with a measurement
of the fine-structure energy separation between the
233, and 2°P, states. In their experiment, positron-
ium in the n = 2 state was produced by directing
positrons from a *Co source onto a copper target
inside a metal cavity. A radiofrequency field was ap-
plied to drive the transition from the 238, state to
the 2°P, state, which occurred at 8,625 MHz, as pre-
dicted. The 2P, state decayed to the 1%S; state with
the emission of the 2,4301& Lyman-a photon, which
was detected with a photomultiplier tube, and, fi-
nally, the 138, state decayed to three gamma rays,
which were detected with a scintillation counter.
The results of this experiment were fully consistent
with the predictions of QED.

Precision experimental work in the late twenti-
eth century sparked renewed interest in positron-
tum. Several experiments have measured decay
rates of orthopositronium that are slightly higher,
on the order of one part in a thousand, than pre-
dicted by theoretical estimates. Experiments of
this kind are done with great care to identify and
correct for any small effects that could influence
the outcome of the measurements. This discrep-
ancy has prompted refined calculations of higher-
order corrections and even led to speculations
about possible exotic particles, as yet undetected,
into which positronium might decay. As experi-
ments are performed with greater accuracy and
theoretical calculations are carried out with greater
sophistication, this discrepancy may disappear. If
the discrepancy persists, it would pose a serious
problem for QED.

See also: POSITRON; QUANTUM ELECTRODYNAMICS; SPEC-
TRAL SERIES
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POTENTIAL

See CHEMICAL POTENTIAL; FELECTRIC POTENTIAL; EN-
ERGY, POTENTIAL; JONIZATION POTENTIAL

POTENTIAL BARRIER

The term “potential barrier” is used when systems are
described in terms of energy flow. For example, con-
sider a simple pendulum as shown in Fig. 1. The pen-
dulum has its greatest kinetic energy, that is, energy
by virtue of motion, when it passes through its equi-
librium position at § = 0 {straight down). The pendu-
lum has its greatest potential energy, that is, energy
by virtue of location, when it reaches its maximum
height at § = *8,. The sum of the kinetic and poten-
tial energies is the total energy, which is constant in
this case. As the pendulum rises, its potential energy
increases, and since the total energy remains con-
stant, its kinetic energy must decrease. Because ki-
netic energy never can be negative, the pendulum
must stop when its total energy becomes all potential.
One way of expressing the fact that the potential en-
ergy cannot increase any further is to say that the pen-
dulum has “run into a potential barrier.” The point at
which this occurs is called a turning point since the
pendulum reverses its direction of motion there.

1228



POTENTIAL BARRIER

Potential barrier acquires a more visual meaning
when the energy flow is illustrated graphically, in an
energy diagram. The energy diagram representing
the motion of a simple pendulum is shown in Fig. 2.
The horizontal axis represents the angular displace-
ment from equilibrium, with # = ( denoting the
equilibrium position (straight down) and 6 = *=7
denoting the totally inverted position (straight up).
The vertical axis represents energy. The solid curve
shows the potential energy at each 6, the line of
pluses (++-) shows the total energy at each 6, and
the difference between them is the kinetic energy at
each ¢. The pendulum is represented by a point on
the line of constant energy. At 6 = 0, the point rep-
resenting the pendulum is on the line of constant
energy above 6 = 0, and the energy is all kinetic. As
the pendulum moves away from equilibrium in the
direction of increasing 4, the point representing it
remains on the line of constant energy and also
moves in the direction of increasing 8. Since the
total energy remains constant while the potential en-
ergy increases, the kinetic energy must decrease.
Thus, the diagram shows that the pendulum must
slow down as it moves away from equilibrium. The
farther from equilibrium the pendulum moves, the
smaller its kinetic energy becomes until the total en-
ergy is all potential at § = @, whence the pendulum
stops. In the energy diagram, the point representing
the system also stops at 6 and has the appearance of
“running into a potential barrier,” that is, into the
petential energy curve, After hitting the potential
energy curve at fp, the system point moves back
along the line of constant energy in the direction
from which it came until it hits the potential energy
curve at —f, where it again stops and reverses its di-
rection of motion. Thus, potential barrier acquires a
more picturesque meaning when we watch the sys-
tem point in an energy diagram bounce off the po-
tential energy curve at each turning point, since its
motion resembles that of a real elastic ball bouncing
off real barriers at % 6,.

The simple pendulum is an example of a bound
system, that is, of a system whose motion is confined
to a bounded region. Potential barriers also occur
for systems that are unbounded. For example, con-
sider an elastic ball hitting a wall. Describing what
happens in terms of forces, we say that the wall ex-
erts a force on the ball, which eventually brings the
ball to rest and reverses its direction of motion.
Viewing this same process in terms of energy flow,
we say that as the ball hits the wall, its kinetic energy
decreases while its potential energy increases, since

—V
KE=0 KE =max KE=0
PE = max PE=0 PE =max
=8y 0=0 6=8;

Figure 1 A simple pendulum. When the pendu-
lum moves through its equilibrium position, the
total energy is all kinetic. At the highest point in its
motion, the total energy is all potential, and the
pendulum stops since it has run into a potential bar-
rier. (Courtesy of T. Jayaweera)

kinetic energy is being stored in the ball’s deforma-
tion. When the ball comes to rest against the wall,
we say it has "run into a potential barrier” because
its total energy is all potential. Since the ball can
proceed no further in its original direction of mo-
tion, it begins moving back in the direction from
which it came. Once the ball moves away from the
wall, its motion is unbounded since there is nothing
in this direction to impede its travel. Thus, potential
barriers also occur in unbound systems such as balls
bouncing off walls, alpha particles colliding with
heavy nuclei, carts rolling up hills, and so on.

In general, one can use either the force or energy
framework for describing and predicting motion.

B E Y L YRR

KE

}PE

o 0 90 N

Dl—————————

-

Figare 2 The energy diagram for the simple pen-
dulum of Fig. 1. The point representing the pendu-
lum moves along the line (+++) of constant
energy £, and the pendulum’s potential energy is
denoted by the solid curve. The turning points of
the motion, where the pendulum runs into poten-
tial barriers, are denoted by =8. (Courtesy of T.
Jayaweera)
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POTENTIAL BARRIER,

The energy description, however, has a distinct ad-
vantage: A great deal of information can be ob-
tained from studying energy flow without actually
having to solve any equations of motion. This simpli-
fies many problems and, furthermore, means that
studying energy flow provides a lot of information
even when the equations of motion are too compli-
cated to solve. Thus, the framework of energy is
used throughout physics, and potential barriers and
turning points play important roles in understand-
ing many different types of physical systems.

Potential Barriers in Classical Mechanics

Studying the energy flow of a simple pendulum
actually enables us to understand a number of dif-
ferent systems since the simple pendulum is just one
example of a simple harmonic oscillator. Similarly,
studying the potential energy function V() = —a/r
enables us to understand many different gravita-
tional and electrostatic systems. For exaraple, when
o = GMm (with G= 6.67 X 10! in SI units), V(7) is
the gravitational (Kepler) potential energy of a mass
m a distance 7 from a second mass M fixed at
r=10. When o = —kQqg (with k= 1/47e, = 8.99 X
10°% in SI units and 1 in cgs units), V(7 is the electro-
static (Coulomb) potential energy of a charge g a
distance rfrom a second charge Qfixed at v = 0. For
motion in three dimensions in such a potential, the
total potential energy function depends only on r
and is given by

I? o

U0 = S ™

2

where L is the total angular momentum of the part-
cle, which, for our (central) potential ¥(r), is con-

E

Figure 3 The energy diagram for a bound mass or
charge (E < 0). (Courtesy of T. Jayaweera)

stant. The extra term (L*/2mr®) originates in the ro-
tational kinetic energy, but because ris the only vari-
able it contains, it behaves like a potential energy
keeping particles with nonzero angular momentum
away from the center of force at r = 0; thus, we study
the radial motion with this combined potential en-
ergy. A graph of the various potential energies is
shown in Fig. 3, with the dash-dot-dash curve repre-
senting {—a/r}), the dashed curve representing
(L*/2mr?), and the solid curve representing their
sum U(r).

As mentioned above, the real power of the energy
diagram lies in the amount of information that can
be obtained from it without having to solve any
equations of motion. For example, looking more
closely at Fig. 3, we note that U{r) has a minimum,
and by differentiating U(r) and setting the result
equal to zero, we find that this minimum occurs at
7= [*/ma. Thus, whenever the total energy equals
—mer*/212, the particle moves at a fixed distance r=
L?/ma from the center of force; that is, the particle
moves in a circular orbit with a constant speed. If
the total energy is greater than this value but still
less than zero, the particle’s radial motion will be
bounded between the two turning points rg = 7y
and ry = #iie. At these points the total energy will be
all potential and will be given by

I? @

27?27‘3 To'

Ey

Multiplying both sides of this equation by 72 and
using the quadratic formula, we find that

rmm—ﬁ[1+(1+ L )W]
2nfh) |

and

o _ L 1/2
Tmin & B[l (1 + QmBQEO) :|:

with 8 = a/2E, (remember, E, < 0). Since bounded,
periodic motion between two fixed radii corresponds
to motion in an ellipse, the energy diagram shows
us that whenever the total energy is between
—ma?/2I? and zero, the particle will move in an el-
liptical orbit. Furthermore, from our knowledge of
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POTENTIAL BARRIER

comnic sections, we conclude that the semi-major axis
of this ellipse is & = (7 + #nin) /2 and its eccentricity
8 &5 (Tax = min)/ (Finax ™ Tinin) -

When the total energy is greater than zero and
V() is a repulsive potential (o < (), the particle will
run into only one potential barrier, and this turning
point will be the closest an unbound particle with
angular momentum L can get to the center of force
at v = 0. This particular potential barrier is called
the centrifugal barrier since, for small r, the main
contribution to it comes from the term I2/2mr?
whose gradient is the centrifugal force (a fictional
force that occurs when we apply Newtonian mechan-
ics in rotating reference frames).

Thus, a great deal of information about the three-
dimensional motion of a particle with potential en-
ergy V(r) can be deduced from an energy diagram
using relatively simple mathematics. The same type
of analysis can be carried out with other important
physical problems by defining the relevant potential
energy functions, such as the Yukawa potential en-
ergy, the general relativistic and perturbation theory
corrections to the Kepler potential energy a/r, the
potential energy of a spinning, symmetric top, the
Morse potential energy function for an atom in a di-
atomic molecule, the isotropic oscillator potential
energy V{r} = kr?/2 for the vibrational motion of a
diatomic molecule, the van der Waals potential en-
ergy, and so on.

Potential Barriers in Quantum Mechanics

A number of interesting potential barriers occur
in (nonrelativistic) quantum mechanics, where en-
ergy diagrams are used to understand some of the
more surprising features of quantum systems. The
most famous example is that of alpha decay, in
which a nucleus emits an alpha particle and changes
into another nucleus. In 1928 George Gamow and,
independently, Edward U. Condon and Ronald W.
Gurney showed that alpha decay could be under-
stood as an alpha particle inside a nucleus tunneling
through the potential barrier it encounters at the
nuclear edge. Figure 4 shows an approximation of
the potential energy of such an alpha particle with
total energy E,. Classically, the alpha particle could
not move beyond the nuclear radius at r = g since it
would run into a potential barrier there. But in
quantum mechanics, the alpha particle is described
by a wave function i, and its behavior at the nuclear
edge can display properties not normally associated

with particles. In particular, i is nonzero at the clas-
sical turning point » = @ and decays exponentially
Just beyond it in the classically forbidden region a <
7< b. (This region is classically forbidden because to
be in it the particle would have to have a potential
energy greater than its total energy, or a negative ki-
netic energy.) Consequently, there is a small but fi-
nite probability of finding the alpha particle outside
the nucleus. In other words, if the height of the bar-
rier is not too much greater than the alpha particle’s
energy E,, and if the barrier’s width (b — &) is not
too large, then i can be nonzero in the classically
forbidden region where V() > E. A nonzero { in
this region results in ¢ being nonzero for r > b, Al-
though the probability of finding an alpha particle
at points r > bis quite small, nonetheless, since the
alpha particle encounters the nuclear barrier quite
frequently (about 10% times per second), quantum
theory predicts that some experiments will find it
outside the nucleus. In fact, treating alpha decay as
tunneling through a potential barrier {(also called
barrier penetration), correctly predicts all the re-
sults found experimentally.

Analogs to quantum tunneling occur in a variety
of classical wave systems. For example, in classical
optics, a light wave traveling through glass can be di-
rected so that it hits a glass-air interface at an angle
greater than the critical angle. In this case, all of the
wave will be totally internally reflected. However, if a
second piece of glass is put close to the first, then a
small part of the wave will tunnel through the air

- ,U0

Figure 4 The energy diagram for an alpha particle
inside a nucleus of radius a. E, is the energy of the
alpha particle, and (# — @) is the width of the poten-
tial barrier. (Courtesy of T. Jayaweera)
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POTENTIOMETER

barrier between them and appear in the second
piece of glass. This phenomenon, called frustrated
total internal reflection, was first observed by Isaac
Newton around 1700 and now is routinely demon-
strated in undergraduate physics labs. Similar phe-
nomena also occur with other types of waves.

Tunneling through potential barriers also pro-
vides the basis for our understanding of sponta-
neous nuclear fission, of how electrons pass through
thin oxides and insulators (e.g., tunnel diodes), of
the dynamics of the ammonia molecule and the am-
monia maser, of the Josephson effect and supercon-
ducting quantum interference devices, and of
Scanning Tunneling Microscopes.

See also: BARRIER PENETRATION; DECAY, ALPHA: EngRGY,
KINETIC; ENERGY, POTENTIAL; JOSEPHSON EFFECT;
MASER; MOMENTUM; PENDULUM; SCANNING TUNNELING
MICROSCOPE; SUPERCONDUGTING QUANTUM INTERFER-
ENCE DEVICE; VAN DER WAALS FORCE
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POTENTIOMETER

A potentiometer is an electrical device consisting of
a length of resistance wire (or resistive material)
with some resistance Rand a tap point that slides on
this length of resistance wire, making electrical con-
tact with it. There are three electrical connections to
a potentiometer: points A and B at the ends of the

resistance wire and the sliding tap point 7" (see Fig,
1). The volume control of a radio or stereo is a sim-
ple, inexpensive potentiometer; in contrast, a preci-
sion potentiometer is an expensive instrument that
can be used to measure voltage to high precision.

If connections are made only to the tap point 7'
and to point A of a potentiometer, it becomes an ad-
Justable resistor, or rheostat. The resistance between
points T and A is indicated by Rj, and this varies
from 0 to Ras the slider is moved over the length of
resistance wire from the end near point 4 to the end
near point B.

The potentiometer gets its name from the fact
that it can “meter out” varying amounts of electrical
potential, or voltage, from the output between the
tap point T and one end of the potentiometer wire
(e.g., A). Suppose a battery with emf Vis connected
between end points A4 and B as shown in Fig. 1.
Let the resistance between B and T be Ry while the
resistance between T and A is B, These two resis-
tances constitute a voltage divider so that the volt-
age between tap Tand end A (V) is a fraction of
the voltage between B and A (V). We have that
Via = [Ri/(R) + Rs)lVps = (Ri/R)Vps The resis-
tance (R; + Ry) is a constant equal to the resistance
Rof the potentiometer. As the slider is moved along
the resistance wire, resistance R; varies from 0 to R,
and the voltage Vi between the tap and A varies
from O to V. This is the basic way to produce a vari-
able amount of voltage from a fixed voltage.

In the case of a radio volume control, the voltage
Vsa presented to the potentiometer is an audio-fre-
quency voltage corresponding to the sound wave,
The variable amount of voltage from the poten-
tiometer tap (V) is sent (through an amplifier) to

Figure 1 Schematic diagram of a potentiometer.
The potentiometer is shown connected with work-
ing voltage V, rheostat r, and galvanometer G to
measure voltage V..
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