Senior Seminar Information (Class of 2019)

For the 2018-2019 academic year, the senior seminar topics are Chaotic Dynamical Systems and Advanced Topics in Biomathematics.

To ensure the senior seminar experience is an enriching experience it is necessary to keep class sizes relatively small and even. To help the department place students into seminars, each major who plans to take a senior seminar submits a proposal by NOON on the last day of classes of the winter semester of the junior year. Some details:

    • The proposal is a LaTeX document, a template, to be filled out carefully by the student.  The proposal should be approximately one page.  It should describe which senior seminar you prefer to take, and why.
    1. As a hypothetical example, here is a sample completed proposal in PDF format as Bernhard Riemann would have submitted it.
    • Juniors abroad during the winter semester who do not have access to LaTeX may submit a proposal created in Word or whatever software is available. The proposal must follow the format of the sample PDF document.
    • By noon on the due date, the completed proposal is to be emailed as a PDF document to two people: Deb Cutten (, Academic Administrative Assistant for Hathorn Hall, and Peter Wong (, Chair of the Mathematics Department.
    • The PDF file should have a useful, descriptive name. Riemann would’ve named his “BernhardRiemannSeminarProposal.pdf”, for example.
    • It is a good idea for juniors to discuss the choice between thesis and seminar with faculty members before writing a proposal.
    • The Department meets to consider all thesis and seminar proposals. The Department Chair will notify students of the results of the meeting by the middle of the short-term.
    • The course descriptions for the Winter 2019 senior seminars are below.

MATH 495D. Chaotic Dynamical Systems (Professor Ross)
One of the major scientific accomplishments of the last twenty-five years was the discovery of chaos and the recognition that sensitive dependence on initial conditions is exhibited by so many natural and man-made processes. To really understand chaos, one needs to learn the mathematics behind it. This seminar considers mathematical models of real-world processes and studies how these models behave as they demonstrate chaos and its surprising order. Prerequisite(s): MATH 301. Instructor permission is required.
Tentatively scheduled: MWF 1:10-2:30pm

MATH 495J. Advanced Topics in Biomathematics (Professor Greer)
Biology is one of the most fertile sources of new mathematics. Research may be based on computation and data, or it may rely entirely on theorems and proofs. It may require calculus, linear algebra, graph theory, differential equations, or numerical analysis. Students in this seminar read biology-inspired mathematical research and present their findings to each other. Students’ mathematical interests influence the selection of research papers to be investigated. No previous course in biology or mathematical modeling is required. Prerequisite(s): MATH 301. Instructor permission is required.
Tentatively scheduled: MW 2:40-4:00pm