Physics courses

PHYS 103 Musical Acoustics/Lab

An introduction to the science of sound and the acoustics of musical instruments through the study of mechanical vibrations and waves. This is a hands-on laboratory based exploration that includes a significant project component. No background in physics or mathematics beyond algebra is assumed.

PHYS 106 Energy and Environment

This course examines energy as a fundamental concept in physics and an essential element of human society. Basic principles of energy conservation and transformation are developed to understand sustainable and unsustainable energy resources, and their impact on impending climate change. No background in physics or mathematics beyond algebra is assumed.

PHYS 107 Introductory Physics of Living Systems I/Lab

An introduction to physics designed for students majoring in life sciences and/or interested in pre-health studies. Topics include geometrical optics, Newtonian mechanics, acoustics, fluids and thermal physics. Class meetings integrate group-based laboratory investigations, simulations and problem solving.

PHYS 108 Introductory Physics of Living Systems II/Lab

A continuation of PHYS 107, designed for students majoring in life science and/or interested in pre-health studies. Topics include wave optics, electricity and magnetism, quantum and nuclear physics. Class meetings integrate group-based laboratory investigations, simulations and problem solving. Prerequisite: PHYS 107 or 109.

PHYS 109 Energy, Matter, and Motion

A calculus-based introduction to physics for students interested in the physical sciences. Starting from the concept of energy, the course develops mechanics and thermodynamics with a focus on conservation laws for mass, momentum, and energy. Students examine the atomic nature of matter and its implications. They consider current areas of research as well as applications in physics-adjacent disciplines (e.g., biology, oceanography, materials science, etc.) in order to learn the methods and techniques of the course. Prerequisite(s): MATH 105 or 106.

PHYS 115 Physics for Policymakers

This course presents a minimally mathematical survey of advanced physics aimed at providing future policymakers, executives, and elected officials with background necessary to be comfortable with the increasing scientific and technological nature of economic and political issues. Topics covered include energy and power, atoms, heat, radioactivity and nuclear power, gravity and space, electricity and magnetism, waves and light, climate change, quantum physics, and relativity.

PHYS 119 The Anthropocene

This research-based course examines the current geological epoch, the Anthropocene, where humans are the agents of environmental change. How does climate change at present differ from those in the past? How do we know humans really are the drivers of climate change? How can we expect climate change to manifest in the near future? Why is biodiversity important? The course addresses these questions from scientific and mathematical perspectives. The course also critically examines IPCC projections and proposals like the Green New Deal. Students construct their own narrative of the course topics through independent or collaborative research.

PHYS 211 Newtonian Mechanics

A rigorous study of Newtonian mechanics. Beginning with Newton’s laws, the concepts of energy, momentum, and angular momentum are developed and applied to gravitational, harmonic, and rigid-body motions. Prerequisite(s): MATH 106 and PHYS 107 or 109.

PHYS 216 Computational Physics

An introduction to computational methods for simulating physical systems, this course focuses on the numerical analysis and algorithmic implementation necessary for efficient solution of integrals, derivatives, linear systems, differential equations, and optimization. While the course presents a rigorous introduction to the numerical analysis underlying these techniques, the emphasis remains on practical solutions to important physical problems. Students solve problems across the wide range of applications of computational physics including astrophysics, biological population dynamics, gravitational wave detection, urban traffic flow, and materials science. No prior experience in programming is required, though students without a technical computing background are encouraged to take PHYS s10 before enrolling. Prerequisite(s): MATH 106 and either PHYS 108 or PHYS S31. Prerequisite(s), which may be taken concurrently: MATH 205.

PHYS 220 Dynamical Climate

An introduction to the dynamical behavior of climate on geologic and human timescales. Simple conceptual models are developed, with the goal of understanding the role of feedback, stability, and abrupt changes. Topics include the basic physics of climate, El Niño/La Niña, climate models, the greenhouse effect and global warming, and glacial cycles. Python is used as the main computational tool; no prior experience is required. Prerequisite(s): MATH 106; and any 100-level earth and climate sciences course or PHYS 109.

PHYS 221 Nuclear and Radiation Physics

How and why do radioactive nuclei emit radiation? How does ionizing radiation interact with matter and what does that mean for us? How is radiation used to image the body and treat cancer? What are the health hazards of radiation? How do we harness nuclear reactions to generate energy? This course surveys the fundamentals of radioactivity, nuclear reactions, x-ray and gamma physics, radiation dosimetry, medical imaging and therapy, and nuclear reactor physics. Students explore the scientific, medical, environmental, and political contexts of nuclear and radiation science. Prerequisite(s): PHYS 108 or 109.

PHYS 222 Electricity and Magnetism

A detailed study of the basic concepts and fundamental experiments of electromagnetism. The development proceeds historically, culminating with Maxwell’s equations. Topics include the electric and magnetic fields produced by charge and current distributions, forces and torques on such distributions in external fields, properties of dielectrics and magnetic materials, electromagnetic induction, and electromagnetic waves. Prerequisite(s): MATH 106 and PHYS 108 or 109. Prerequisite(s), which may be taken concurrently: PHYS 108. Recommended background, which may be taken concurrently: MATH 206.

PHYS 230 Electronics

A laboratory-oriented study of the basic principles and characteristics of electronic components and their applications in circuits and instruments found in a research laboratory. Both analog and digital systems are studied, as are microcontrollers and their applications. Prerequisite(s): PHYS S31, or PHYS 222, or PHYS 108 AND MATH 106.

PHYS 231 Laboratory Physics/Lab

Students investigate selected experiments relevant to the development of contemporary physics and the practice of experimental physics research. They are introduced to the use of electronic instruments and computers for data acquisition and analysis, techniques of error analysis, and the practice of speaking and writing about experimental physics. Prerequisite(s): PHYS 211, 222, 230, or s31.

PHYS 255E Nonlinear Models and Chaos

A model is a simplified description of a system in mathematical and/or conceptual terms. Models help us understand how systems work and behave. The goals of this course are threefold: building models of natural systems, exploring their underlying mathematical structures and similarities, and simulating them with computers. Concepts acquired from simple systems in physics are applied to more complex systems in areas of biology, environment, climate, and social dynamics. Prerequisite(s): MATH 105 or 106 and PHYS 107.

PHYS 301 Mathematical Methods of Physics

A study of selected mathematical techniques necessary for advanced work in physics and other sciences. The interpretation of functions as vectors in Hilbert space provides a unifying theme for developing Fourier analysis, special functions, methods for solving ordinary and partial differential equations, and techniques of vector calculus. These methods are applied to selected problems in acoustics, heat flow, electromagnetic fields, and classical and quantum mechanics. Prerequisite(s): PHYS 211. Prerequisite(s) or corequisite(s): MATH 205. Recommended background, which may be taken concurrently: MATH 206.

PHYS 308 Introductory Quantum Mechanics

An investigation of the basic principles of quantum mechanics in the Schrödinger representation and the application of these principles to tunneling, the harmonic oscillator, and the hydrogen atom. Basic theoretical concepts such as Hermitian operators, Ehrenfest’s theorem, commutation relations, and uncertainty principles are developed as the course proceeds. Prerequisite(s): PHYS 301 and s31.

PHYS 309 Quantum Computing

In the emerging field of quantum computing, the laws of nature are used to store and process information in new ways. Leveraging the extraordinary properties of quantum mechanics enables an exponential speed-up for certain classes of computational problems. In this course students are introduced to the ideas of the qubit, quantum gates, and quantum circuits; learn about experimental progress; explore quantum algorithms; and implement their own code on quantum cloud computing resources. Prerequisite(s): MATH 205. Prerequisite(s) or corequisite(s): PHYS 308.

PHYS 341 Condensed Matter

A study of crystal structures and the electronic properties of solids, together with an investigation of some active areas of research. Topics include crystal binding, X-ray diffraction, lattice vibrations, metals, insulators, semiconductors, electronic devices, superconductivity, and magnetism. Prerequisite(s): PHYS 222 and 301. Recommended background: PHYS 308 or 361.

PHYS 360 Independent Study

PHYS 361 Thermal Physics

The theory of equilibrium states is developed in a general way and applied to specific thermodynamic systems. The concepts of classical and quantum statistical mechanics are formulated. Prerequisite(s): PHYS 108 or s31 and PHYS 211 or 222.

PHYS 373 Classical and Modern Optics

A general course on light treated as an electromagnetic wave, including the theory and operation of common optical instruments. A significant part of the course is devoted to topics in modern optics, such as the use of lasers and the nonlinear effects produced by intense light sources. Prerequisite(s): PHYS 108 or s31 and PHYS 222.

PHYS 409 Quantum Theory

A formal treatment of quantum theory using Dirac notation, including an introduction to approximation methods and their applications. The general theory of angular momentum and time-independent perturbation theory are developed and used to derive the fine and hyperfine structures of hydrogen. Additional topics may include quantum statistics, quantum dynamics, and time-dependent perturbation theory.Prerequisite(s): PHYS 308.

PHYS 412 Advanced Classical Mechanics

A development of the Lagrangian and Hamiltonian formulations of classical mechanics, together with the ideas of symmetry and invariance and their relation to fundamental conservation laws. Additional topics include kinematics and dynamics in noninertial reference frames, a detailed analysis of rigid-body motion, and the theory of small oscillations and normal modes. Prerequisite(s): PHYS 211 and 301.

PHYS 422 Electromagnetic Theory

Starting from Maxwell’s equations, this course develops electrostatics from solutions to Poisson’s equation, magnetostatics using the vector potential, electrodynamics with scalar and vector potentials, and properties of electromagnetic waves. Simple radiation problems are discussed as well as the relativistic formulation of electrodynamics. Prerequisite(s): PHYS 222 and 301.

PHYS 457 Senior Thesis

An independent study program for students working on a research problem in a field of interest, culminating in the writing of a senior thesis. Students register for PHYS 457 in the fall semester. Majors writing an honors thesis register for both PHYS 457 and 458.

PHYS 458 Senior Thesis

An independent study program for students working on a research problem in a field of interest, culminating in the writing of a senior thesis. Students register for PHYS 458 in the winter semester. Majors writing an honors thesis register for both PHYS 457 and 458.

PHYS S31 Spacetime, Waves, and Photons

An exploration of several core ideas in modern physics: special relativity (Einstein’s formulation of space and time underlying the modern understanding of the universe), the wave and particle (photon) nature of light, and the consequences of energy quantization. Laboratory investigations consider related phenomena. The course may examine additional topics in quantum mechanics and nuclear or particle physics. Prerequisite(s): MATH 106 and PHYS 107 or 109.

PHYS S34 Elementary Particle Physics

At subatomic scales, all known physics is described in terms of a small number of types of particles, classified as leptons (and antileptons), quarks (and antiquarks), gauge bosons, and the Higgs boson. This course explores the properties and interactions of these elementary particles. Topics include the historical development of relativistic quantum mechanics and quantum field theory; the modern theories of the strong, weak, and electromagnetic interactions; electroweak symmetry breaking; experimental methods of particle physics; and the ongoing quest to discover and understand physics beyond the Standard Model.

PHYS S50 Independent Study